Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 821: 153408, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35090916

ABSTRACT

This study presents the temporal variations in riverine 137Cs concentrations and fluxes to the ocean during high-flow events in three coastal river catchments contaminated by the Fukushima Daiichi Nuclear Power Plant accident. River water samples were collected at points downstream in the Niida, Ukedo, and Takase Rivers during three high-flow events that occurred in 2019-2020. Variations in both the dissolved and particulate 137Cs concentrations appeared to reflect the spatial pattern of the 137Cs inventory in the catchments, rather than variations in physico-chemical properties of water and suspended solid. Negative relationships between the 137Cs concentration and δ15N in suspended solid were found in all rivers during the intense rainfall events, suggesting an increased contribution of sediment from forested areas to the elevation of particulate 137Cs concentration. The 137Cs flux ranged from 0.33 to 19 GBq, depending on the rainfall erosivity. The particulate 137Cs fluxes from the Ukedo River were relatively low compared with the other two rivers and were attributed to the effect of the Ogaki Dam reservoir upstream. The percentage of 137Cs desorbed in seawater relative to 137Cs in suspended solids ranged from 2.8% to 6.6% and tended to be higher with a higher fraction of exchangeable 137Cs. The estimated potential release of 137Cs desorbed from suspended solids to the ocean was 0.022-0.57 GBq, and its ratio to the direct flux of dissolved 137Cs was 0.12-6.2. Episodic sampling during high-flow events demonstrated that the particulate 137Cs flux depends on catchment characteristics and controls 137Cs transfer to the ocean.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Japan , Water Pollutants, Radioactive/analysis
2.
Chemosphere ; 281: 130751, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34023762

ABSTRACT

Desorption of radiocesium (137Cs) from riverine particles into seawater strongly influences 137Cs concentrations in coastal seawater. This process is important for quantifying the input of radionuclides to marine environments. Here we quantify the particulate 137Cs flux from the Abukuma River, Japan, during typhoon Hagibis and following typhoons in 2019 and estimate the resulting increased dissolved 137Cs levels in coastal seawater. Particulate 137Cs export flux, 1.1 × 1012 Bq, from the Abukuma River during the 4-day period of typhoon Hagibis (12-15 October 2019) equaled two-thirds of the annual flux during 2012-2015, the period of high 137Cs levels following the Fukushima Daiichi Nuclear Power Plant accident. The flux of the desorbed fraction from the Abukuma River during typhoon Hagibis was 0.061-0.12 × 1012Bq, and its daily flux to the surrounding coastal seawater (1.5-3.0 × 1010 Bq/d) was one to two orders of magnitude greater than the estimated input to the coastal seawater during the pre-typhoon period (1.3× 108-1.0 × 109 Bq/d). Simulated results suggest that the massive influx of riverine particles and subsequent desorption of 137Cs increased dissolved 137Cs levels in the coastal seawater by an order of magnitude, from 3.3 mBq/L (pre-typhoon level) to 45-126 mBq/L. This found pathway opens up new scenarios involving radionuclide dynamics in the boundary area of river-sea system.


Subject(s)
Cyclonic Storms , Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Floods , Japan , Rivers , Water , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...