Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30500412

ABSTRACT

The Spontaneously Hypertensive Rat (SHR) strain has been suggested as an animal model of schizophrenia, considering that adult SHRs display behavioral abnormalities that mimic the cognitive, psychotic and negative symptoms of the disease and are characteristic of its animal models. SHRs display: (I) deficits in fear conditioning and latent inhibition (modeling cognitive impairments), (II) deficit in prepulse inhibition of startle reflex (reflecting a deficit in sensorimotor gating, and associated with psychotic symptoms), (III) diminished social behavior (modeling negative symptoms) and (IV) hyperlocomotion (modeling the hyperactivity of the dopaminergic mesolimbic system/ psychotic symptoms). These behavioral abnormalities are reversed specifically by the administration of antipsychotic drugs. Here, we performed a behavioral characterization of young (27-50 days old) SHRs in order to investigate potential early behavioral abnormalities resembling the prodromal phase of schizophrenia. When compared to Wistar rats, young SHRs did not display hyperlocomotion or PPI deficit, but exhibited diminished social interaction and impaired fear conditioning and latent inhibition. These findings are in accordance with the clinical course of schizophrenia: manifestation of social and cognitive impairments and absence of full-blown psychotic symptoms in the prodromal phase. The present data reinforce the SHR strain as a model of schizophrenia, expanding its validity to the prodromal phase of the disorder.


Subject(s)
Disease Models, Animal , Prodromal Symptoms , Rats, Inbred SHR , Schizophrenia , Animals , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Male , Motor Activity , Prepulse Inhibition/drug effects , Rats, Wistar , Reflex, Startle/drug effects , Schizophrenia/drug therapy , Schizophrenia/physiopathology
2.
Curr Pharm Des ; 18(32): 4960-5, 2012.
Article in English | MEDLINE | ID: mdl-22716146

ABSTRACT

OBJECTIVES: Clinical and neurobiological findings suggest that cannabinoids and their receptors are implicated in schizophrenia. Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa plant, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that spontaneously hypertensive rats (SHR) present a deficit in contextual fear conditioning (CFC) that is specifically ameliorated by antipsychotics and aggravated by proschizophrenia manipulations. These results led us to suggest that the CFC deficit presented by SHR could be used as a model to study emotional processing impairment in schizophrenia. The aim of this study is to evaluate the effects of CBD and rimonabant (CB1 receptor antagonist) on the contextual fear conditioning in SHR and Wistar rats (WR). METHODS: Rats were submitted to CFC task after treatment with different doses of CBD (experiment 1) and rimonabant (experiment 2). RESULTS: In experiment 1, SHR showed a decreased freezing response when compared to WR that was attenuated by 1 mg/kg CBD. Moreover, all CBD-treated WR presented a decreased freezing response when compared to control rats. In experiment 2, SHR showed a decreased freezing response when compared to WR that was attenuated by 3 mg/kg rimonabant. DISCUSSION: Our results suggest a potential therapeutical effect of CBD and rimonabant to treat the emotional processing impairment presented in schizophrenia. In addition, our results reinforce the anxiolytic profile of CBD.


Subject(s)
Cannabidiol/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Disease Models, Animal , Emotions , Piperidines/pharmacology , Pyrazoles/pharmacology , Schizophrenia/drug therapy , Schizophrenic Psychology , Animals , Cannabidiol/therapeutic use , Cannabinoid Receptor Antagonists/therapeutic use , Male , Piperidines/therapeutic use , Pyrazoles/therapeutic use , Rats, Wistar , Rimonabant
3.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(7): 1748-52, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21693159

ABSTRACT

Deficits in an operational measure of sensorimotor gating - the prepulse inhibition of startle (PPI) - are presented in psychiatric disorders such as schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). Some previous studies showed that the spontaneously hypertensive rats (SHR) present PPI deficit. Although SHR is suggested as an animal model to study ADHD, we have suggested that the behavioral phenotype of this strain mimics some aspects of schizophrenia. The aim of this study was to characterize the PPI response in SHR. Pharmacological characterization consisted in the evaluation of the effects of the following drugs administered to adult Wistar rats (WR) and SHR previously to the PPI test: amphetamine (used for ADHD and also a psychotomimetic drug), haloperidol and clozapine (antipsychotic drugs), metoclopramide (dopamine antagonist without antipsychotic properties) and carbamazepine (mood stabilizer). Our results showed that SHR presented reduced PPI. This deficit was similar to that induced by amphetamine in WR. Only the atypical antipsychotic clozapine improved the PPI deficit observed in SHR. These findings reinforce the SHR strain as an animal model to study several aspects of schizophrenia, including the abnormalities in sensorimotor gating associated with this disease.


Subject(s)
Antipsychotic Agents/pharmacology , Reflex, Startle/physiology , Schizophrenia/drug therapy , Sensory Gating/physiology , Acoustic Stimulation , Amphetamine/pharmacology , Amphetamine/therapeutic use , Animals , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Carbamazepine/pharmacology , Carbamazepine/therapeutic use , Clozapine/pharmacology , Clozapine/therapeutic use , Disease Models, Animal , Dopamine Antagonists/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Male , Metoclopramide/pharmacology , Metoclopramide/therapeutic use , Rats , Rats, Inbred SHR , Rats, Wistar , Reflex, Startle/drug effects , Schizophrenia/physiopathology , Sensory Gating/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...