Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 99(2): 345-53, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17218344

ABSTRACT

BACKGROUND AND AIMS: Distinguishing between, and quantifying, the different components of ecosystem C fluxes is critical in predicting the responses of ecosystem C cycling to climate change. The aims of this study were to quantify the photosynthetic and respiratory fluxes of a 50-year-old Scots pine (Pinus sylvestris) ecosystem, and to distinguish respiration of branches with needles from that of stems, and that of soil. METHODS: The CO2 flux of the ecosystem was continuously measured using the eddy covariance (EC) method, and its components (respiration and photosynthesis of a branch with needles, stem and soil surface) were measured with an automated chamber system, from 2001 to 2004. KEY RESULTS: All values below are chamber based. The average temperature coefficient (Q10) of respiration was 2.7, 2.2 and 4.0, respectively, for branch (Rbran), stem (Rstem) and the soil surface (Rsoil). Respiration at a reference temperature of 15 degrees C (R15) was 1.27, 0.49 and 4.02 micromol CO2 m(-2) ground s(-1) for the three components, respectively. Over 4 years, the annual Rbran, Rstem and Rsoil ranged from 196 to 256, 56 to 83 and 439 to 598 g C m(-2) ground year(-1), respectively, with a 4-year average of 227, 72 and 507 g C m(-2) ground year(-1). Annual ecosystem respiration (Reco) was 731, 783, 909 and 751 g C m(-2) ground year(-1) in years 2001-2004, respectively, gross primary production (GPP) was 922, 1030, 1138 and 1001 g C m(-2) ground year(-1), and net ecosystem production (NEP) was 191, 247, 229 and 251 g C m(-2) ground year(-1). The average contribution of Rbran, Rstem and Rsoil to Reco was 29, 9 and 62 %, respectively. Overstorey photosynthesis accounted for 96 % of GPP. The average Reco/GPP ratio was 0.78. Net primary production (NPP) in the 4 years was 469, 581, 600 and 551 g C m(-2) year(-1), respectively, with the NPP/GPP ratio 0.54 averaged over the years. CONCLUSIONS: Respiration from the soil is the dominant component of ecosystem respiration. Differences between years in Reco were due to differences in temperature during the growing season. Rsoil was more sensitive to temperature than Rbran and Rstem, and differences in Rsoil were responsible for the differences in Reco between years.


Subject(s)
Carbon/metabolism , Ecosystem , Pinus sylvestris/metabolism , Carbon Dioxide/metabolism , Oxygen Consumption , Photosynthesis , Plant Transpiration , Seasons , Time Factors , Trees
2.
Ann Bot ; 94(6): 889-96, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15469943

ABSTRACT

BACKGROUND AND AIMS: Stem respiration of trees is a major, but poorly assessed component of the carbon balance of forests, and important for geo-chemistry. Measurements are required under naturally changing seasonal conditions in different years. Therefore, intra- and inter-annual carbon fluxes of stems in forests were measured continuously from April to November in three consecutive years. METHODS: Stem respiratory CO2 fluxes of 50-year-old Scots pine (Pinus sylvestris) trees were continuously measured with a CO2 analyser, and, concomitantly, stem circumference, stem and air temperature and other environmental factors and photosynthesis, were also measured automatically. KEY RESULTS: There were diurnal, seasonal and inter-annual changes in stem respiration, which peaked at 1600 h during the day and was highest in July. The temperature coefficient of stem respiration (Q10) was greater during the growing season than when growth was slow or had stopped, and more sensitive to temperature in the growing season. The annual Q10 remained relatively constant at about 2 over the three years, while respiration at a reference temperature of 15 degrees C (R15) was higher in the growing than in the non-growing season (1.09 compared with 0.78 micromol m(-2) stem surface s(-1)), but was similar between the years. Maintenance respiration was 76 %, 82 % and 80 % of the total respiration of 17.46, 17.26 and 19.35 mol m2 stem surface in 2001, 2002 and 2003, respectively. The annual total stem respiration of the stand per unit ground area was 75.97 gC m(-2) in 2001 and 74.28 gC m(-2) in 2002. CONCLUSIONS: Stem respiration is an important component in the annual carbon balance of a Scots pine stand, contributing 9 % to total carbon loss from the ecosystem and consuming about 8 % of the carbon of the ecosystem gross primary production. Stem (or air) temperature was the most important predictor of stem carbon flux. The magnitude of stem respiration is modified by photosynthesis and tree growth. Solar radiation indirectly affects stem respiration through its effect on photosynthesis.


Subject(s)
Pinus sylvestris/physiology , Plant Stems/physiology , Carbon/metabolism , Carbon Dioxide/metabolism , Circadian Rhythm , Climate , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...