Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 71(10): 2356-2371, 2023 10.
Article in English | MEDLINE | ID: mdl-37293807

ABSTRACT

Microglia are the resident macrophages of the central nervous system (CNS) and play a pivotal role in immune surveillance and CNS homeostasis. Morphological transitions in microglia are indicative for local changes in the CNS microenvironment and serve as a proxy for the detection of alterations in the CNS, both in health and disease. Current strategies to 'measure' microglia combine advanced morphometrics with clustering approaches to identify and categorize microglia morphologies. However, these studies are labor intensive and clustering approaches are often subject to relevant feature selection bias. Here, we provide a morphometrics pipeline with user-friendly computational tools for image segmentation, automated feature extraction and morphological categorization of microglia by means of hierarchical clustering on principal components (HCPC) without the need for feature inclusion criteria. With this pipeline we provide new and detailed insights in the distribution of microglia morphotypes across sixteen CNS regions along the rostro-caudal axis of the adult C57BL/6J mouse CNS. Although regional variations in microglia morphologies were evident, we found no evidence for male-female dimorphism at any CNS region investigated, indicating that - by and large - microglia in adult male and female mice are morphometrically indistinguishable. Taken together, our newly developed pipeline provides valuable tools for objective and unbiased identification and categorization of microglia morphotypes and can be applied to any CNS (disease) model.


Subject(s)
Central Nervous System Diseases , Microglia , Male , Female , Mice , Animals , Microglia/physiology , Sex Characteristics , Mice, Inbred C57BL , Central Nervous System , Cluster Analysis
2.
J Neuroinflammation ; 18(1): 57, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33618716

ABSTRACT

BACKGROUND: An innate immune memory response can manifest in two ways: immune training and immune tolerance, which refers to an enhanced or suppressed immune response to a second challenge, respectively. Exposing monocytes to moderate-to-high amounts of bacterial lipopolysaccharide (LPS) induces immune tolerance, whereas fungal ß-glucan (BG) induces immune training. In microglia, it has been shown that different LPS inocula in vivo can induce either immune training or tolerance. Few studies focused on impact of BG on microglia and were only performed in vitro. The aim of the current study was to determine whether BG activates and induces immune memory in microglia upon peripheral administration in vivo. METHODS: Two experimental designs were used. In the acute design, mice received an intraperitoneal (i.p.) injection with PBS, 1 mg/kg LPS or 20 mg/kg BG and were terminated after 3 h, 1 or 2 days. In the preconditioning design, animals were first challenged i.p. with PBS, 1 mg/kg LPS or 20 mg/kg BG. After 2, 7 or 14 days, mice received a second injection with PBS or 1 mg/kg LPS and were sacrificed 3 h later. Microglia were isolated by fluorescence-activated cell sorting, and cytokine gene expression levels were determined. In addition, a self-developed program was used to analyze microglia morphological changes. Cytokine concentrations in serum were determined by a cytokine array. RESULTS: Microglia exhibited a classical inflammatory response to LPS, showing significant upregulation of Tnf, Il6, Il1ß, Ccl2, Ccl3 and Csf1 expression, three h after injection, and obvious morphological changes 1 and 2 days after injection. With an interval of 2 days between two challenges, both BG and LPS induced immune training in microglia. The training effect of LPS changed into immune tolerance after a 7-day interval between 2 LPS challenges. Preconditioning with BG and LPS resulted in increased morphological changes in microglia in response to a systemic LPS challenge compared to naïve microglia. CONCLUSIONS: Our results demonstrate that preconditioning with BG and LPS both induced immune training of microglia at two days after the first challenge. However, with an interval of 7 days between the first and second challenge, LPS-preconditioning resulted in immune tolerance in microglia.


Subject(s)
Immunity, Innate/drug effects , Immunity, Innate/immunology , Microglia/drug effects , Microglia/immunology , beta-Glucans/immunology , Animals , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunologic Memory/drug effects , Immunologic Memory/immunology , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , beta-Glucans/pharmacology
3.
Glia ; 69(3): 729-745, 2021 03.
Article in English | MEDLINE | ID: mdl-33068332

ABSTRACT

The DNA excision repair protein Ercc1 is important for nucleotide excision, double strand DNA break, and interstrand DNA crosslink repair. In constitutive Ercc1-knockout mice, microglia display increased phagocytosis, proliferation and an enhanced responsiveness to lipopolysaccharide (LPS)-induced peripheral inflammation. However, the intrinsic effects of Ercc1-deficiency on microglia are unclear. In this study, Ercc1 was specifically deleted from Cx3cr1-expressing cells and changes in microglia morphology and immune responses at different times after deletion were determined. Microglia numbers were reduced with approximately 50% at 2-12 months after Ercc1 deletion. Larger and more ramified microglia were observed following Ercc1 deletion both in vivo and in organotypic hippocampal slice cultures. Ercc1-deficient microglia were progressively lost, and during this period, microglia proliferation was transiently increased. Ercc1-deficient microglia were gradually replaced by nondeficient microglia carrying a functional Ercc1 allele. In contrast to constitutive Ercc1-deficient mice, microglia-specific deletion of Ercc1 did not induce microglia activation or increase their responsiveness to a systemic LPS challenge. Gene expression analysis suggested that Ercc1 deletion in microglia induced a transient aging signature, which was different from a priming or disease-associated microglia gene expression profile.


Subject(s)
Endonucleases , Microglia , Animals , DNA Damage , DNA-Binding Proteins/genetics , Endonucleases/genetics , Lipopolysaccharides/toxicity , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...