Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(48): e2302531, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37605460

ABSTRACT

Sensing of neurotransmitters (NTs) down to nm concentrations is demonstrated by utilizing self-assembled monolayers of plasmonic 60 nm Au nanoparticles in close-packed arrays immobilized onto glass substrates. Multiplicative surface-enhanced Raman spectroscopy enhancements are achieved by integrating Fe(III) sensitizers into the precisely-defined <1 nm nanogaps, to target dopamine (DA) sensing. The transparent glass substrates allow for efficient access from both sides of the monolayer aggregate films by fluid and light, allowing repeated sensing in different analytes. Repeated reusability after analyte sensing is shown through oxygen plasma cleaning protocols, which restore pristine conditions for the nanogaps. Examining binding competition in multiplexed sensing of two catecholamine NTs, DA and epinephrine, reveals their bidentate binding and their interactions. These systems are promising for widespread microfluidic integration enabling a wide range of continuous biofluid monitoring for applications in precision health.

2.
J Phys Chem Lett ; 11(8): 2875-2882, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32191487

ABSTRACT

Lipid bilayers assembled on solid substrates have been extensively studied with single-molecule resolution as the constituent molecules diffuse in 2D; however, the out-of-plane motion is typically ignored. Here we present the subnanometer out-of-plane diffusion of nanoparticles attached to hybrid lipid bilayers (HBLs) assembled on metal surfaces. The nanoscale cavity formed between the Au nanoparticle and Au film provides strongly enhanced optical fields capable of locally probing HBLs assembled in the gaps. This allows us to spectroscopically resolve the nanoparticles assembled on bilayers, near edges, and in membrane defects, showing the strong influence of charged lipid rafts. Nanoparticles sitting on the edges of the HBL are observed to flip onto and off of the bilayer, with flip energies of ∼10 meV showing how thermal energies dynamically modify lipid arrangements around a nanoparticle. We further resolve the movement of individual lipid molecules by doping the HBL with low concentrations of Texas Red (TxR) dye-labeled lipids.


Subject(s)
Gold/chemistry , Lipid Bilayers/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Spectrum Analysis/methods , Gold/analysis , Lipid Bilayers/analysis , Metal Nanoparticles/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...