Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 8(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36354598

ABSTRACT

A highly selective and sensitive EGFET-pH sensor based on composite TiO2-PANI had been developed in this work. A sol-gel titanium dioxide (TiO2) and the composite of TiO2 with semiconducting polyaniline (PANI) were deposited using a simple spin-coating method on an indium tin oxide (ITO) substrate. The films have been explored as a sensing electrode (SE) of extended gate field-effect transistor (EGFET) for pH applications in the range of pH 2 to 12. The pH sensitivities between TiO2, TiO2-PANI bilayer composite, and TiO2-PANI composite thin films were discussed. Among these, the TiO2-PANI composite thin film showed a super-Nernstian behavior with high sensitivity of 66.1 mV/pH and linearity of 0.9931; good repeatability with a standard deviation of 0.49%; a low hysteresis value of 3 mV; and drift rates of 4.96, 5.54, and 3.32 mV/h in pH 4, 7, and 10, respectively, for 6 h. Upon applying the TiO2-PANI composite as the SE for nitrate measurement, low sensitivity of 12.9 mV/dec was obtained, indicating that this film is a highly selective sensing electrode as a pH sensor. The surface morphology and crystallinity of the thin films were also discussed.

2.
Membranes (Basel) ; 12(1)2021 Dec 27.
Article in English | MEDLINE | ID: mdl-35054554

ABSTRACT

Multi-enzyme cascade catalysis involved three types of dehydrogenase enzymes, namely, formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH), alcohol dehydrogenase (ADH), and an equimolar electron donor, nicotinamide adenine dinucleotide (NADH), assisting the reaction is an interesting pathway to reduce thermodynamically stable molecules of CO2 from the atmosphere. The biocatalytic sequence is interesting because it operates under mild reaction conditions (low temperature and pressure) and all the enzymes are highly selective, which allows the reaction to produce three basic chemicals (formic acid, formaldehyde, and methanol) in just one pot. There are various challenges, however, in applying the enzymatic conversion of CO2, namely, to obtain high productivity, increase reusability of the enzymes and cofactors, and to design a simple, facile, and efficient reactor setup that will sustain the multi-enzymatic cascade catalysis. This review reports on enzyme-aided reactor systems that support the reduction of CO2 to methanol. Such systems include enzyme membrane reactors, electrochemical cells, and photocatalytic reactor systems. Existing reactor setups are described, product yields and biocatalytic productivities are evaluated, and effective enzyme immobilization methods are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...