Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 19741, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957274

ABSTRACT

Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/ß subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor ß1/ß2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.


Subject(s)
Autoimmune Diseases , Carcinoma, Lewis Lung , Animals , Humans , Autoimmunity , Killer Cells, Natural , T-Lymphocytes, Regulatory , Autoimmune Diseases/metabolism , Carcinoma, Lewis Lung/metabolism
2.
Sci Rep ; 13(1): 11702, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474630

ABSTRACT

Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Ultraviolet Rays/adverse effects , Immunosuppression Therapy/adverse effects , DNA Damage , DNA Repair , Melanoma/etiology , Interleukin-12 , Skin Neoplasms/complications
3.
Polymers (Basel) ; 15(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36771794

ABSTRACT

Fluorinated polymers have unique wettability and protein adsorption properties. The site-specific alteration of these properties could expand their application to different research areas. In this work, a fluorinated homopolymer and two of its copolymers with 4-vinylbenzyl glycidyl ether (VBGE) are synthesized by free radical polymerization. The produced polymers are then used to develop resist formulations by the addition of a photoacid generator. Films of these formulations are exposed to ultraviolet radiation through a binary mask and heated to create the pattern. It is found that the water contact angle values of the exposed films areas are reduced compared to those of the unexposed ones, with the exception of pentafluorophenyl methacrylate (PFMA) homopolymer film. This is attributed to the reaction of the epoxy groups creating x-links and producing hydroxyl groups and the cleavage of the pentafluorophenyl group from the ester group leading to carboxylic acid groups. Both modifications on the exposed areas are verified by FTIR spectroscopy and ToF-SIMS analysis. In addition, the biomolecules adsorption ability of the exposed area is increasing 10-15 times compared to the unexposed one for the PFMA homopolymer and the PFMA/VBGE 1:1 copolymer. Thus, the proposed polymers and patterning procedure could find application to spatially directed immobilization of biomolecules and/or cells onto a surface for both biosensing and tissue engineering purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...