Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38782570

ABSTRACT

Within 15,000 years, the explosive adaptive radiation of haplochromine cichlids in Lake Victoria, East Africa, generated 500 endemic species. In the 1980s, the upsurge of Nile perch, a carnivorous fish artificially introduced to the lake, drove the extinction of more than 200 endemic cichlids. The Nile perch predation particularly harmed piscivorous cichlids, including paedophages, cichlids eat eggs and fries, which is an example of the unique trophic adaptation seen in African cichlids. Here, aiming to investigate past demographic events possibly triggered by the invasion of Nile perch and the subsequent impacts on the genetic structure of cichlids, we conducted large-scale comparative genomics. We discovered evidence of recent bottleneck events in four species, including two paedophages, which began during the 1970s-1980s, and population size rebounded during the 1990s-2000s. The timing of the bottleneck corresponded to the historical records of endemic haplochromines' disappearance and later resurgence, which is likely associated with the introduction of Nile perch by commercial demand to Lake Victoria in the 1950s. Interestingly, among the four species that likely experienced bottleneck, Haplochromis sp. 'matumbi hunter,' a paedophagous cichlid, showed the most severe bottleneck signatures. The components of shared ancestry inferred by ADMIXTURE suggested a high genetic differentiation between matumbi hunter and other species. In contrast, our phylogenetic analyses highly supported the monophyly of the five paedophages, consistent with the results of previous studies. We conclude that high genetic differentiation of matumbi hunter occurred due to the loss of shared genetic components among haplochromines in Lake Victoria caused by the recent severe bottleneck.

2.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612665

ABSTRACT

Baleen whales (Mysticeti) possess the necessary anatomical structures and genetic elements for olfaction. Nevertheless, the olfactory receptor gene (OR) repertoire has undergone substantial degeneration in the cetacean lineage following the divergence of the Artiodactyla and Cetacea. The functionality of highly degenerated mysticete ORs within their olfactory epithelium remains unknown. In this study, we extracted total RNA from the nasal mucosae of common minke whales (Balaenoptera acutorostrata) to investigate ORs' localized expression. All three sections of the mucosae examined in the nasal chamber displayed comparable histological structure. However, the posterior portion of the frontoturbinal region exhibited notably high OR expression. Neither the olfactory bulb nor the external skin exhibited the expression of these genes. Although this species possesses four intact non-class-2 ORs, all the ORs expressed in the nasal mucosae belong to class-2, implying the loss of aversion to specific odorants. These anatomical and genomic analyses suggest that ORs are still responsible for olfaction within the nasal region of baleen whales, enabling them to detect desirable scents such as prey and potential mating partners.


Subject(s)
Minke Whale , Receptors, Odorant , Animals , Nasal Mucosa , Smell/genetics , Affect , Cetacea , Receptors, Odorant/genetics
3.
Tissue Cell ; 85: 102255, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922676

ABSTRACT

The turtle olfactory organ consists of upper (UCE) and lower (LCE) chamber epithelium, which send axons to the ventral and dorsal portions of the olfactory bulbs, respectively. Generally, the UCE is associated with glands and contains ciliated olfactory receptor neurons (ORNs), while the LCE is devoid of glands and contains microvillous ORNs. However, the olfactory organ of the pig-nosed turtle Carettochelys insculpta appears to be a single olfactory system morphologically: there are no associated glands; ciliated ORNs are distributed throughout the olfactory organ; and the olfactory bulb is not divided into ventral and dorsal portions. In this study, we analyzed the expression of odorant receptors (ORs), the major olfactory receptors in turtles, in the pig-nosed turtle olfactory organ, via in situ hybridization. Of 690 ORs, 375 were classified as class I and 315 as class II. Some class II ORs were expressed predominantly in the posterior dorsomedial walls of the nasal cavity, while other class II ORs and all class I ORs examined were expressed in the remaining region. These results suggest that the pig-nosed turtle olfactory organ can be divided into two regions according to the expression of ORs.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Turtles , Animals , Swine , Turtles/genetics , Turtles/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Olfactory Receptor Neurons/metabolism , Olfactory Bulb/metabolism , In Situ Hybridization , Olfactory Mucosa
4.
Genes Genet Syst ; 98(5): 249-257, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37853642

ABSTRACT

Keratins are intermediate filament proteins that are important for epidermal strength and protection from desiccation. Keratin genes are highly duplicated and have diversified by forming two major clusters in the genomes of terrestrial vertebrates. The keratin genes of lungfishes, the closest fish to tetrapods, have not been studied at the genomic level, despite the importance of lungfishes in terrestrial adaptation. Here, we identified keratin genes in the genomes of two lungfish species and performed syntenic and phylogenetic analyses. Additionally, we identified keratin genes from two gobies and two mudskippers, inhabiting underwater and terrestrial environments. We found that in lungfishes, keratin genes were duplicated and diversified within two major clusters, similar to but independent of terrestrial vertebrates. By contrast, keratin genes were not notably duplicated in mudskippers. The results indicate that keratin gene duplication occurred repeatedly in lineages close to tetrapods, but not in teleost fish, even in species adapted to terrestrial environments.


Subject(s)
Fishes , Keratins , Animals , Keratins/genetics , Phylogeny , Fishes/genetics , Genome , Genomics
5.
Acta Histochem ; 125(7): 152078, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37540956

ABSTRACT

The vomeronasal organ is an olfactory organ found in amphibians and higher vertebrates. Type 1 vomeronasal receptors, one of the major olfactory receptors in vertebrates, are expressed in the vomeronasal organ in mammals. In amphibians and fish, they are expressed in the olfactory epithelium. The lungfish, which is the species of fish most closely related to amphibians, has a primitive vomeronasal organ: the recess epithelium. Expression of type 1 vomeronasal receptors has been reported in both the olfactory epithelium and the recess epithelium in three species of African lungfish and one species of South American lungfish. However, a previous study suggested that in the African lungfish Protopterus dolloi these receptors are expressed only in the olfactory epithelium. In this study, we identified 21 type 1 vomeronasal receptor genes in P. dolloi and examined the expression sites in the olfactory organ. In P. dolloi, most cells expressing the type 1 vomeronasal receptor were distributed in the olfactory epithelium, but a few were also found in the recess epithelium. This implies that the functions of the olfactory epithelium and the primitive vomeronasal organ are incompletely separated, and that all extant African and South American lungfish share this trait.

6.
Genes Genet Syst ; 98(2): 93-99, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37495512

ABSTRACT

Cichlid fishes are textbook examples of explosive speciation and adaptive radiation, providing a great opportunity to understand how the genomic substrate yields extraordinary species diversity. Recently, we performed comparative genomic analyses of three Lake Victoria cichlids to reveal the genomic substrates underlying their rapid speciation and adaptation. We found that long divergent haplotypes derived from large-scale standing genetic variation, which originated before the adaptive radiation of Lake Victoria cichlids, may have contributed to their rapid diversification. In addition, the present study on genomic data from other East African cichlids suggested the reuse of alleles that may have originated in the ancestral lineages of Lake Tanganyika cichlids during cichlid evolution. Therefore, our results highlight that the primary factor that could drive repeated adaptive radiation across East African cichlids was allelic reuse from standing genetic variation to adapt to their own specific environment. In this report, we summarize the main results and discuss the evolutionary mechanisms of cichlids, based on our latest findings.


Subject(s)
Cichlids , Lakes , Animals , Phylogeny , Cichlids/genetics , Tanzania , Genetic Variation , Genetic Speciation
7.
Ecol Evol ; 13(4): e9964, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37038517

ABSTRACT

The evolutionary transition of vertebrates from water to land during the Devonian period was accompanied by major changes in animal respiratory systems in terms of physiology and morphology. Indeed, the fossil record of the early tetrapods has revealed the existence of internal gills, which are vestigial fish-like traits used underwater. However, the fossil record provides only limited data on the process of the evolutionary transition of gills from fish to early tetrapods. This study investigated the gills of Polypterus senegalus, a basal ray-finned/amphibious fish which shows many ancestral features of stem Osteichthyes. Based on scanning electron microscopy observations and transcriptome analysis, the existence of motile cilia in the gills was revealed which may create a flow on the gill surface leading to efficient ventilation or remove particles from the surface. Interestingly, these cilia were observed to disappear after rearing in terrestrial or high CO2 environments, which mimics the environmental changes in the Devonian period. The cilia re-appeared after being returned to the original aquatic environment. The ability of plastic changes of gills in Polypterus revealed in this study may allow them to survive in fluctuating environments, such as shallow swamps. The ancestor of Osteichthyes is expected to have possessed such plasticity in the gills, which may be one of the driving forces behind the transition of vertebrates from water to land.

8.
Zoological Lett ; 9(1): 6, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36895049

ABSTRACT

Lungfish are the most closely related fish to tetrapods. The olfactory organ of lungfish contains lamellae and abundant recesses at the base of lamellae. Based on the ultrastructural and histochemical characteristics, the lamellar olfactory epithelium (OE), covering the surface of lamellae, and the recess epithelium, contained in the recesses, are thought to correspond to the OE of teleosts and the vomeronasal organ (VNO) of tetrapods. With increasing body size, the recesses increase in number and distribution range in the olfactory organ. In tetrapods, the expression of olfactory receptors is different between the OE and VNO; for instance, the type 1 vomeronasal receptor (V1R) is expressed only in the OE in amphibians and mainly in the VNO in mammals. We recently reported that V1R-expressing cells are contained mainly in the lamellar OE but also rarely in the recess epithelium in the olfactory organ of lungfish of approximately 30 cm body length. However, it is unclear whether the distribution of V1R-expressing cells in the olfactory organ varies during development. In this study, we compared the expression of V1Rs in the olfactory organs between juveniles and adults of the African lungfish Protopterus aethiopicus and South American lungfish, Lepidosiren paradoxa. The density of V1R-expressing cells was higher in the lamellae than in the recesses in all specimens evaluated, and this pattern was more pronounced in juveniles than adults. In addition, the juveniles showed a higher density of V1R-expressing cells in the lamellae compared with the adults. Our results imply that differences in lifestyle between juveniles and adults are related to differences in the density of V1R-expressing cells in the lamellae of lungfish.

9.
J Comp Neurol ; 531(1): 116-131, 2023 01.
Article in English | MEDLINE | ID: mdl-36161277

ABSTRACT

Lungfish are the fish related most closely to tetrapods. The olfactory organ of lungfish contains two distinct sensory epithelia: the lamellar olfactory epithelium (OE) and the recess epithelium (RecE). Based on their ultrastructural and histological characteristics, the lamellar OE and the RecE are considered to correspond respectively to the teleost OE and a primitive vomeronasal organ (VNO). In tetrapods, the OE and VNO have been shown to express different families of olfactory receptors; for example, in mammals, the OE expresses odorant receptors and trace amine-associated receptors, while the VNO expresses type 1 (V1Rs) and type 2 (V2Rs) vomeronasal receptors. In the present study, we examined the expression of V1Rs in the olfactory organs of two African lungfish, Protopterus annectens and Protopterus amphibius. RNA sequencing and phylogenetic analyses identified 29 V1R genes in P. annectens and 50 V1R genes in P. amphibius. Most V1Rs identified in these lungfish were classified as the tetrapod-type V1Rs initially found in tetrapods and distinct from fish-type V1Rs. In teleost, which all lack a VNO, all olfactory receptors are expressed in the OE, while in Xenopus V1Rs are expressed exclusively in the OE, and not in the VNO. In situ hybridization analysis indicated that lungfish V1Rs were expressed mainly in the lamellar OE and rarely in the RecE. These results imply that V1R expression in lungfish represents an intermediate step toward the complete segregation of V1R expression between the OE and VNO, reflecting the phylogenetic position of lungfish between teleosts and amphibians.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Vomeronasal Organ , Animals , Receptors, Odorant/genetics , Phylogeny , Vomeronasal Organ/metabolism , Olfactory Mucosa/metabolism , Olfactory Receptor Neurons/metabolism , Fishes , Mammals
10.
J Exp Biol ; 225(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36189492

ABSTRACT

Fishes use olfaction to gain varied information vital for survival and communication. To understand biodiversity in fishes, it is important to identify what receptors individual fish use to detect specific chemical compounds. However, studies of fish olfactory receptors and their ligands are still limited to a few model organisms represented primarily by zebrafish. Here, we tested the c-fos expression of olfactory sensory neurons (OSNs) in an East African cichlid, the most diversified teleost lineage, by in situ hybridization with a c-fos riboprobe. We confirmed that microvillous neurons contributed the most to the detection of amino acids, as in other fishes. Conversely, we found that ciliated neurons contributed the most to the detection of conjugated steroids, known as pheromone candidates. We also found that V2Rs, the major receptor type in microvillous neurons, exhibited differential responsiveness to amino acids, and further suggest that the cichlid-specific duplication of V2R led to ligand differentiation by demonstrating a differential response to arginine. Finally, we established a non-lethal method to collect cichlid urine and showed how various OSNs, including V1R+ neurons, respond to male urine. This study provides an experimental basis for understanding how cichlids encode natural odours, which ultimately provides insight into how olfaction has contributed to the diversification of cichlids.


Subject(s)
Cichlids , Receptors, Odorant , Male , Animals , Odorants , Receptors, Odorant/genetics , Cichlids/genetics , Zebrafish/physiology , Ligands , Olfactory Mucosa , Pheromones , Amino Acids , Steroids , Arginine
11.
Genes (Basel) ; 13(6)2022 05 31.
Article in English | MEDLINE | ID: mdl-35741751

ABSTRACT

Currently, the insertions of SINEs (and other retrotransposed elements) are regarded as one of the most reliable synapomorphies in molecular systematics. The methodological mainstream of molecular systematics is the calculation of nucleotide (or amino acid) sequence divergences under a suitable substitution model. In contrast, SINE insertion analysis does not require any complex model because SINE insertions are unidirectional and irreversible. This straightforward methodology was named the "SINE method," which resolved various taxonomic issues that could not be settled by sequence comparison alone. The SINE method has challenged several traditional hypotheses proposed based on the fossil record and anatomy, prompting constructive discussions in the Evo/Devo era. Here, we review our pioneering SINE studies on salmon, cichlids, cetaceans, Afrotherian mammals, and birds. We emphasize the power of the SINE method in detecting incomplete lineage sorting by tracing the genealogy of specific genomic loci with minimal noise. Finally, in the context of the whole-genome era, we discuss how the SINE method can be applied to further our understanding of the tree of life.


Subject(s)
Evolution, Molecular , Retroelements , Animals , Genome , Mammals/genetics , Phylogeny , Retroelements/genetics , Short Interspersed Nucleotide Elements
13.
Genes (Basel) ; 13(5)2022 04 30.
Article in English | MEDLINE | ID: mdl-35627189

ABSTRACT

African cichlid fishes harbor an extraordinary diversity of sex-chromosome systems. Within just one lineage, the tribe Haplochromini, at least 6 unique sex-chromosome systems have been identified. Here we focus on characterizing sex chromosomes in cichlids from the Lake Victoria basin. In Haplochromis chilotes, we identified a new ZW system associated with the white blotch color pattern, which shows substantial sequence differentiation over most of LG16, and is likely to be present in related species. In Haplochromis sauvagei, we found a coding polymorphism in amh that may be responsible for an XY system on LG23. In Pundamilia nyererei, we identified a feminizing effect of B chromosomes together with XY- and ZW-patterned differentiation on LG23. In Haplochromis latifasciatus, we identified a duplication of amh that may be present in other species of the Lake Victoria superflock. We further characterized the LG5-14 XY system in Astatotilapia burtoni and identified the oldest stratum on LG14. This species also showed ZW differentiation on LG2. Finally, we characterized an XY system on LG7 in Astatoreochromis alluaudi. This report brings the number of distinct sex-chromosome systems in haplochromine cichlids to at least 13, and highlights the dynamic evolution of sex determination and sex chromosomes in this young lineage.


Subject(s)
Cichlids , Animals , Cichlids/genetics , Lakes , Polymorphism, Genetic , Sex Chromosomes/genetics , Sex Determination Analysis
14.
BMC Genomics ; 22(Suppl 5): 920, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35637454

ABSTRACT

BACKGROUND: Aggression is an evolutionarily conserved behavior critical for animal survival. In the fish Betta splendens, across different stages of fighting interactions, fighting opponents suffer from various stressors, especially from the great demand for oxygen. Using RNA sequencing, we profiled differential alternative splicing (DAS) events in the brains of fish collected before fighting, during fighting, and after fighting to study the involvement of alternative splicing (AS) in the response to stress during the fight. RESULTS: We found that fighting interactions induced the greatest increase in AS in the 'during-fighting' fish, followed by that of the 'after-fighting' fish. Intron retention (IR) was the most enriched type among all the basic AS events. DAS genes were mainly associated with synapse assembly, ion transport, and regulation of protein secretion. We further observed that IR events significantly differentiated between winners and losers for 19 genes, which were associated with messenger RNA biogenesis, DNA repair, and transcription machinery. These genes share many common features, including shorter intron length and higher GC content. CONCLUSIONS: This study is the first comprehensive view of AS induced by fighting interactions in a fish species across different stages of those interactions, especially with respect to IR events in winners and losers. Together, these findings facilitate future investigations into transcriptome complexity and AS regulation in response to stress under the context of aggression in vertebrates.


Subject(s)
Alternative Splicing , Fishes , Animals , Base Composition , Fishes/genetics , Sequence Analysis, RNA , Transcriptome
15.
Sci Rep ; 12(1): 6455, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440756

ABSTRACT

The vomeronasal type 2 receptor (V2R, also called OlfC) multigene family is found in a broad range of jawed vertebrates from cartilaginous fish to tetrapods. V2Rs encode receptors for food-related amino acids in teleost fish, whereas for peptide pheromones in mammals. In addition, V2Rs of teleost fish are phylogenetically distinct from those of tetrapods, implying a drastic change in the V2R repertoire during terrestrial adaptation. To understand the process of diversification of V2Rs in vertebrates from "fish-type" to "tetrapod-type", we conducted an exhaustive search for V2Rs in cartilaginous fish (chimeras, sharks, and skates) and basal ray-finned fish (reedfish, sterlet, and spotted gar), and compared them with those of teleost, coelacanth, and tetrapods. Phylogenetic and synteny analyses on 1897 V2Rs revealed that basal ray-finned fish possess unexpectedly higher number of V2Rs compared with cartilaginous fish, implying that V2R gene repertoires expanded in the common ancestor of Osteichthyes. Furthermore, reedfish and sterlet possessed various V2Rs that belonged to both "fish-type" and "tetrapod-type", suggesting that the common ancestor of Osteichthyes possess "tetrapod-type" V2Rs although they inhabited underwater environments. Thus, the unexpected diversity of V2Rs in basal ray-finned fish may provide insight into how the olfaction of osteichthyan ancestors adapt from water to land.


Subject(s)
Evolution, Molecular , Vertebrates , Animals , Fishes/genetics , Mammals/genetics , Multigene Family , Phylogeny , Vertebrates/genetics
16.
Zoological Lett ; 8(1): 5, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135614

ABSTRACT

Fish possess one olfactory organ called the olfactory epithelium (OE), by which various chemical substances are detected. On the other hand, tetrapods possess two independent olfactory organs called the main olfactory epithelium (MOE) and vomeronasal organ (VNO), each of which mainly detects general odorants and pheromones, respectively. Traditionally, the VNO, so-called concentrations of vomeronasal neurons, was believed to have originated in tetrapods. However, recent studies have identified a primordial VNO in lungfish, implying that the origin of the VNO was earlier than traditionally expected. In this study, we examined the presence/absence of the VNO in the olfactory organ of bichir (Polypterus senegalus), which is the most ancestral group of extant bony vertebrates. In particular, we conducted a transcriptomic evaluation of the accessory olfactory organ (AOO), which is anatomically separated from the main olfactory organ (MOO) in bichir. As a result, several landmark genes specific to the VNO and MOE in tetrapods were both expressed in the MOO and AOO, suggesting that these organs were not functionally distinct in terms of pheromone and odorant detection. Instead, differentially expressed gene (DEG) analysis showed that DEGs in AOO were enriched in genes for cilia movement, implying its additional and specific function in efficient water uptake into the nasal cavity other than chemosensing. This transcriptomic study provides novel insight into the long-standing question of AOO function in bichir and suggests that VNO originated in the lineage of lobe-finned fish during vertebrate evolution.

17.
Data Brief ; 38: 107448, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34660862

ABSTRACT

Siamese fighting fish Betta splendens are notorious for their aggressiveness and males of this fish have been widely used to study aggression. However, an understanding of brain transcriptome signature associated with aggression in the context of male-male interaction in this fish remains to be understood. Herein, RNA-Seq transcriptome data from 37 brains samples collected at different fighting stages are described. These brain samples were collected before fighting (B), during fighting (D20 and D60), and after fighting (A0 and A30). The raw data were analyzed for differential gene expression using edgeR package in R. A criterion of FDR cut-off ≤ 0.05 and an absolute fold change (FC) of 0 or greater were used to identify top upregulated and downregulated genes in fighting groups (D20, D60, A0, and A30) relative to non-fighting group (B). The data presented hereafter enable fundamental studies on genes and molecular events mediating aggressive behavior in this fish and will lay a valuable foundation for future research on the aggression of vertebrates.

18.
Gene ; 784: 145601, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33766705

ABSTRACT

Territorial defense involves frequent aggressive confrontations with competitors, but little is known about how brain-transcriptomic profiles change between individuals competing for territory establishment. Our previous study elucidated that when two fish Betta splendens males interact, transcriptomes across their brains synchronize in a way that reflects a mutual assessment process between them at the gene expression level. Here we aim to evaluate how the brain-transcriptomic profiles of opponents change immediately after shifting their social status (i.e., the winner/loser has emerged) and 30 min after this shift. We showed that changes in the expression of certain genes are unique to different fighting stages and the expression patterns of certain genes are transiently or persistently changed across all fighting stages. These brain transcriptomic responses are in accordance with behavioral changes across the fight. Strikingly, the specificity of the brain-transcriptomic synchronization of a pair during fighting was gradually lost after fighting ceased, leading to the emergence of a basal neurogenomic state in which the changes in gene expression were reduced to minimum and consistent across all individuals. This state shares common characteristics with the hibernation state that animals adopt to minimize their metabolic rates to save energy. Interestingly, expression changes for genes related to metabolism, autism spectrum disorder, and long-term memory still differentiated losers from winners. Together, the fighting system using male B. splendens provides a promising platform for investigating neurogenomic states of aggression in vertebrates.


Subject(s)
Aggression/physiology , Fishes/physiology , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Animals , Behavior, Animal/physiology , Brain/metabolism , Fish Proteins/genetics , Fishes/genetics , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Male , Sequence Analysis, RNA , Territoriality
19.
Mol Biol Evol ; 38(8): 3111-3125, 2021 07 29.
Article in English | MEDLINE | ID: mdl-33744961

ABSTRACT

The cichlids of Lake Victoria are a textbook example of adaptive radiation, as >500 endemic species arose in just 14,600 years. The degree of genetic differentiation among species is very low due to the short period of time after the radiation, which allows us to ascertain highly differentiated genes that are strong candidates for driving speciation and adaptation. Previous studies have revealed the critical contribution of vision to speciation by showing the existence of highly differentiated alleles in the visual opsin gene among species with different habitat depths. In contrast, the processes of species-specific adaptation to different ecological backgrounds remain to be investigated. Here, we used genome-wide comparative analyses of three species of Lake Victoria cichlids that inhabit different environments-Haplochromis chilotes, H. sauvagei, and Lithochromis rufus-to elucidate the processes of adaptation by estimating population history and by searching for candidate genes that contribute to adaptation. The patterns of changes in population size were quite distinct among the species according to their habitats. We identified many novel adaptive candidate genes, some of which had surprisingly long divergent haplotypes between species, thus showing the footprint of selective sweep events. Molecular phylogenetic analyses revealed that a large fraction of the allelic diversity among Lake Victoria cichlids was derived from standing genetic variation that originated before the adaptive radiation. Our analyses uncovered the processes of species-specific adaptation of Lake Victoria cichlids and the complexity of the genomic substrate that facilitated this adaptation.


Subject(s)
Adaptation, Biological/genetics , Cichlids/genetics , Genetic Speciation , Alleles , Animals , Genetic Variation , Genome , Lakes , Population Density , Species Specificity , Tanzania
20.
Nature ; 592(7856): 756-762, 2021 04.
Article in English | MEDLINE | ID: mdl-33408411

ABSTRACT

Egg-laying mammals (monotremes) are the only extant mammalian outgroup to therians (marsupial and eutherian animals) and provide key insights into mammalian evolution1,2. Here we generate and analyse reference genomes of the platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus), which represent the only two extant monotreme lineages. The nearly complete platypus genome assembly has anchored almost the entire genome onto chromosomes, markedly improving the genome continuity and gene annotation. Together with our echidna sequence, the genomes of the two species allow us to detect the ancestral and lineage-specific genomic changes that shape both monotreme and mammalian evolution. We provide evidence that the monotreme sex chromosome complex originated from an ancestral chromosome ring configuration. The formation of such a unique chromosome complex may have been facilitated by the unusually extensive interactions between the multi-X and multi-Y chromosomes that are shared by the autosomal homologues in humans. Further comparative genomic analyses unravel marked differences between monotremes and therians in haptoglobin genes, lactation genes and chemosensory receptor genes for smell and taste that underlie the ecological adaptation of monotremes.


Subject(s)
Biological Evolution , Genome , Platypus/genetics , Tachyglossidae/genetics , Animals , Female , Male , Mammals/genetics , Phylogeny , Sex Chromosomes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...