Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Transplant Cell Ther ; 29(12): 777.e1-777.e8, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678607

ABSTRACT

Long-term cryopreservation of peripheral blood stem cells (PBSCs) is highly useful in the setting of tandem/multiple transplantations or treatment of relapse in the autologous hematopoietic stem cell transplantation (HSCT) setting. Even in allogeneic HSCT, donor lymphocyte infusions may be stored for months to years if excess stem cells are collected from donors. Cryopreservation is a delicate, complex, and costly procedure, and higher concentrations of dimethyl sulfoxide (DMSO), a commonly used cryoprotectant, can be toxic to cells and cause adverse effects in the recipient during infusions. In this study, we examined the effect of long-term cryopreservation using 4.35% DMSO (as final concentration) with methyl cellulose and uncontrolled rate freezing in a mechanical freezer (-80 °C) on the viability and colony-forming ability of CD34+ human PBSCs. For patients undergoing autologous HSCT, PBSCs were cryopreserved using DMSO (final concentration of 4.35%) with methyl cellulose. The post-thaw viability of PBSCs was determined using Trypan blue exclusion and flow cytometry-based 7-amino-actinomycin-D (FC-7AAD) methods. Concentrations of CD34+ stem cells and immune cell subsets in post-thaw PBSC harvest samples were assessed using multicolor flow cytometry, and the clonogenic potential of post-thaw stem cells was studied using a colony-forming unit (CFU) assay. CD34+ stem cell levels were correlated with the prestorage CD34 levels using the Pearson correlation test. The viability results in the Trypan blue dye exclusion method and the flow cytometry-based method were compared using Bland-Altman plots. We studied 26 PBSC harvest samples with a median cryopreservation duration of 6.6 years (range, 3.8 to 11.5 years). The median viability of post-thaw PBSCs was >80% using both methods, with a weak agreement between them (r = .03; P = .5). The median CD34+ stem cell count in the post-thaw samples was 9.13 × 106/kg (range, .44 to 26.27 × 106/kg). The CFU assay yielded a good proliferation and differentiation potential in post-thaw PBSCs, with a weak correlation between granulocyte macrophage CFU and CD34+ stem cell levels (r = .4; P = .05). Two samples that had been cryopreserved for >8 years showed low viability. Cryopreservation of PBSCs using 4.35% DMSO with methyl cellulose and uncontrolled freezing in a mechanical freezer at -80 °C allows the maintenance of long-term viability of PBSC for up to 8 years.


Subject(s)
Dimethyl Sulfoxide , Peripheral Blood Stem Cells , Humans , Freezing , Dimethyl Sulfoxide/pharmacology , Hematopoietic Stem Cells , Methylcellulose/pharmacology , Resource-Limited Settings , Trypan Blue/pharmacology , Cryopreservation/methods , Antigens, CD34/pharmacology
2.
Pharm Dev Technol ; 21(1): 76-85, 2016.
Article in English | MEDLINE | ID: mdl-25329444

ABSTRACT

The usefulness of Docetaxel (DT) as an anti-cancer agent is limited to parenteral route owing to its very poor oral bioavailability. Thus, to improve its oral efficacy, DT was loaded in novel cationic lipid nanocapsules (DT CLNC). The DT CLNC possessed size of 130-150 nm, zeta potential of +72mV, adequate DT loading and over 95% encapsulation efficiency. TEM revealed capsular structure of DT CLNC. Lipolysis study indicated improved solubilization of DT by nanocapsules in comparison to DT solution. DT CLNC exhibited significantly higher release of DT in comparison to DT solution during in vitro permeation studies employing non-reverted rat-intestinal sac. Superior uptake of DT in zebra fishes exposed to DT CLNC resulted in greater apoptosis-based cell death as compared to those exposed to DT solution. This correlated well with the significantly superior (p < 0.05) anti-angiogenic activity of DT CLNC system over DT solution, in zebra fish model. DT CLNC also inhibited tumor growth in melanoma cell line induced tumors in C57BL/6 mice significantly, as compared to DT solution (p < 0.05). The DT CLNC system demonstrated adequate stability, with tremendous potential to improve oral efficacy of DT and can serve as an alternative to existing DT formulations available commercially for parenteral use.


Subject(s)
Lipids/chemistry , Lipids/pharmacokinetics , Nanocapsules/chemistry , Taxoids/chemistry , Taxoids/pharmacokinetics , Animals , Cations , Docetaxel , Female , Lipids/administration & dosage , Melanoma, Experimental/drug therapy , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Nanocapsules/administration & dosage , Particle Size , Rats , Taxoids/administration & dosage , Zebrafish
3.
Drug Deliv ; 23(3): 999-1016, 2016.
Article in English | MEDLINE | ID: mdl-25026415

ABSTRACT

Hydrophobicity of PLA nanoparticles makes them a good substrate for macrophageal and reticulo-endothelial system uptake. Long-circulating properties can be imparted to these particles by coating them with hydrophilic stabilizers. Surface-modified PLA nanoparticles loaded with anti-cancer agent temozolomide were fabricated by solvent evaporation method and coated with surface modifiers. Selection of the surface modifier was based upon uptake of nanoparticles by K9 cells (liver cells). The particles were prepared and characterized for various physicochemical properties using transmission electron microscopy, differential scanning calorimetry, powder X-ray diffraction and in vitro dissolution studies. In vitro BBB permeation studies were performed using the co-culture model developed by using Madin-Darby canine kidney and C6 glioma cells as endothelial and glial cells, respectively. In vitro C6 glioma cell cytotoxicity, cellular proliferation, cellular migration and cellular uptake studies due to developed nanoparticles was assessed. In vivo studies such as pharmacokinetics, qualitative and quantitative biodistribution studies were performed for the developed nanoparticles. Drug-loaded nanoparticles with entrapment efficiency of 50% were developed. PEG-1000 and polysorbate-80 coated nanoparticles were least taken up by the liver cells. Characterization of the nanoparticles revealed formation of spherical shape nanoparticles, with no drug and excipient interaction. In vivo pharmacokinetics of developed nanoparticles depicted enhancement of half-life, area under the curve and mean residence time of the drug. Qualitative and quantitative biodistribution studies confirmed enhanced permeation of the drug into the brain upon loading into nanoparticles with less deposition in the highly perfused organs like lung, liver, spleen, heart and kidney.


Subject(s)
Brain/metabolism , Dacarbazine/analogs & derivatives , Glioma/drug therapy , Lactic Acid/chemistry , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Polymers/chemistry , Animals , Cell Line , Cell Line, Tumor , Dacarbazine/administration & dosage , Dacarbazine/chemistry , Dacarbazine/pharmacokinetics , Dogs , Drug Carriers/chemistry , Drug Delivery Systems/methods , Half-Life , Humans , Madin Darby Canine Kidney Cells , Male , Polyesters , Polyethylene Glycols/chemistry , Polysorbates/chemistry , Rats , Rats, Wistar , Temozolomide , Tissue Distribution
4.
Int J Pharm ; 490(1-2): 391-403, 2015 Jul 25.
Article in English | MEDLINE | ID: mdl-26002568

ABSTRACT

The present study compares three vesicular systems, cationic LeciPlex, invasomes, and conventional liposomes for their ability to deliver drugs deep into the skin. Skin penetration ability of the three vesicular systems was studied for two drugs namely idebenone (antioxidant/anticancer) and azelaic acid (antiacne). All systems showed sizes in nanometer range with small polydispersity indices. Vesicular systems were characterized by CryoTEM studies to understand the differences in morphology of the vesicular systems. Ex vivo human skin penetration studies suggested a pattern in penetration of drugs in different layers of the skin: LeciPlex showed higher penetration for idebenone whereas invasomes showed higher penetration of azelaic acid. Ex vivo study using a fluorescent dye (DiI) was performed to understand the differences in the penetration behavior of the three vesicular systems on excised human skin. In vitro cytotoxicity studies on B16F10 melanoma cell lines revealed, when loaded with idebenone, LeciPlex formulations had the superior activity followed by invasomes and liposomes. In vitro antimicrobial study of azelaic acid loaded systems on Propionibacterium acne revealed high antimicrobial activity for DDAB leciplex followed by almost equal activity for invasomes and CTAB LeciPlex followed by liposomes. Whereas antiacne efficacy study in rats for azelaic acid loaded systems, invasomes exhibited the best antiacne efficacy followed by liposomes and LeciPlex.


Subject(s)
Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemistry , Dermatologic Agents/administration & dosage , Dermatologic Agents/chemistry , Liposomes/chemistry , Skin/metabolism , Animals , Cell Line, Tumor , Chemistry, Pharmaceutical/methods , Dicarboxylic Acids/administration & dosage , Dicarboxylic Acids/chemistry , Drug Delivery Systems/methods , Female , Humans , Liposomes/administration & dosage , Melanoma, Experimental , Propionibacterium acnes/drug effects , Rats , Rats, Wistar , Skin Absorption , Ubiquinone/administration & dosage , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry
5.
Saudi Pharm J ; 23(4): 341-51, 2015 Sep.
Article in English | MEDLINE | ID: mdl-27134534

ABSTRACT

Nanoparticles are being increasingly used in the field of cancer treatment due to their unique properties and advantages. The aim of the present research work was to prepare and characterize a polymeric albumin nanosystem for Cisplatin and evaluate its in-vitro efficacy against B16F10 melanoma. The developed nanoparticles were almost spherical in shape with a particle size in the range of 150-300 nm, low polydispersity values and about 80% drug entrapment efficiency. Albumin nanocarriers sustained the release of Cisplatin for more than 48 h, suggesting the reduction in dosing schedule for this drug. The results from in-vitro cell line studies indicated the dose dependent cytotoxic potential of drug loaded albumin nanoparticles, their potential to inhibit cell proliferation and induce morphological changes. In addition, these nanoparticles exhibited superiority to Cisplatin in hampering the cell migration. Developed nanoparticles caused cell cycle arrest along with time and concentration dependent cellular uptake in B16F10 cell line. These results signify that the prepared Cisplatin albumin nanoparticles could serve as a promising approach for B16F10 melanoma treatment.

6.
Cell Oncol (Dordr) ; 37(5): 339-51, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25204961

ABSTRACT

PURPOSE: Cationic agents have been reported to possess anti-neoplastic properties against various cancer cell types. However, their complexes with lipids appear to interact differently with different cancer cells. The purpose of this study was to (i) design and generate novel cationic lecithin nanoparticles, (ii) assess and understand the mechanism underlying their putative cytotoxicity and (iii) test their effect on cell cycle progression in various cancer-derived cell lines. In addition, we aimed to evaluate the in vivo potential of these newly developed nanoparticles in oral anti-cancer delivery. METHODS: Cationic lecithin nanoparticles were generated using a single step nanoprecipitation method and they were characterized for particle size, zeta potential, stability and in vitro release. Their cytotoxic potential was assessed using a sulforhodamine B assay, and their effect on cell cycle progression was evaluated using flow cytometry. The nanoparticle systems were also tested in vivo for their anti-tumorigenic potential. RESULTS: In contrast to cationic agents alone, the newly developed nanoformulations showed a specific toxicity against cancer cells. The mechanism of toxic cell death included apoptosis, S and G2/M cell cycle phase arrest, depending on the type of cationic agent and the cancer-derived cell line used. Both blank and drug-loaded systems exhibited significant anti-cancer activity, suggesting a synergistic anti-tumorigenic effect of the drug and its delivery system. CONCLUSIONS: Both in vitro and in vivo data indicate that cationic agents themselves exhibit broad anti-neoplastic activities. Complex formation of the cationic agents with phospholipids was found to provide specificity to the anti-cancer activity. These formulations thus possess potential for the design of effective anti-cancer delivery systems.


Subject(s)
Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Cycle/drug effects , Nanoparticles/administration & dosage , Animals , Antineoplastic Agents/chemistry , Cations/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Female , Flow Cytometry , Humans , Lecithins/chemistry , Mice, Inbred C57BL , Nanoparticles/chemistry , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Particle Size , Tumor Burden/drug effects
7.
Biomed Pharmacother ; 68(4): 429-38, 2014 May.
Article in English | MEDLINE | ID: mdl-24721327

ABSTRACT

Tamoxifen (TMX), an estrogen receptor (ER) antagonist, incorporated at surface of liposomes loaded with Doxorubicin (DOX), was hypothesized to serve as ligand for targeting overexpressed ERs on surface and cytosol of breast cancer cells, in addition to its synergism with DOX in killing MCF-7 cells. The TMX-DOX liposomes demonstrated mean size of 188.8±2.2nm and positive potential of+47mV, both suitable for better cellular interaction. TMX-DOX liposomes sustained DOX release in vitro (25.9%) in pH 7.4 at 48h, in comparison with 64.5% DOX release at pH 5.5. In vitro cell line studies demonstrated that TMX-DOX liposomes were more cytotoxic to ER+ve MCF-7 cells as compared to DOX liposomes, DOX solution and TMX-DOX solution (P<0.05). However, there was no statistical difference in cyto-toxicity of TMX-DOX liposomes and DOX liposomes towards ER-ve MDA-MB-231 cells. Flow cytometry and confocal studies in MCF-7 cells revealed greater cell and nuclear uptake of DOX, with TMX guided liposomes as compared to DOX liposomes and DOX solution. TMX-DOX liposomes demonstrated significantly increased inhibition of MCF-7 cell based tumor growth in nude mice (P<0.05) in comparison to DOX solution and DOX liposomes, indicative of target specificity and higher DOX accumulation at tumor site.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Drug Delivery Systems , Receptors, Estrogen/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Breast Neoplasms/pathology , Doxorubicin/administration & dosage , Doxorubicin/analogs & derivatives , Drug Synergism , Female , Humans , Ligands , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Particle Size , Polyethylene Glycols/administration & dosage , Tamoxifen/administration & dosage , Xenograft Model Antitumor Assays
8.
Daru ; 22(1): 18, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24410831

ABSTRACT

BACKGROUND: Nanotechnology has received great attention since a decade for the treatment of different varieties of cancer. However, there is a limited data available on the cytotoxic potential of Temozolomide (TMZ) formulations. In the current research work, an attempt has been made to understand the anti-metastatic effect of the drug after loading into PLGA nanoparticles against C6 glioma cells.Nanoparticles were prepared using solvent diffusion method and were characterized for size and morphology. Diffusion of the drug from the nanoparticles was studied by dialysis method. The designed nanoparticles were also assessed for cellular uptake using confocal microscopy and flow cytometry. RESULTS: PLGA nanoparticles caused a sustained release of the drug and showed a higher cellular uptake. The drug formulations also affected the cellular proliferation and motility. CONCLUSION: PLGA coated nanoparticles prolong the activity of the loaded drug while retaining the anti-metastatic activity.

9.
J Biomed Nanotechnol ; 9(7): 1230-40, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23909137

ABSTRACT

Novel lipid nanocarriers, GeluPearl (GP) comprising of Precirol ATO 5 lipid nanoparticles with (GPNLC) or without oil (GPSLN), loaded with Quercetin (QR), were successfully fabricated to improve therapeutic efficacy. QR loaded GP nanoparticles were optimized to yield adequate colloidal stability, mean particle size in range of 350-380 nm and entrapment efficiency of more than 90%. GPSLN and GPNLC were characterized for morphological evaluation by virtue of cryo-TEM, surface charge, protection offered to QR against alkali mediated degradation and fluorescence studies to evaluate QR-lipid interaction. DSC analysis was performed to get insight into physical state of QR loaded in nanosystems. The in vitro release studies demonstrated sustained drug release potential of QR loaded GP. In vitro lipolysis studies confirmed that lipidic nanocarriers can improve QR solubilization. QR loaded GP nanosystems significantly (P < 0.05) reduced flank tumor volumes in C57BL/6 mice over a 22 day study period compared to QR suspension. GPSLN significantly reduced lung colonization and enhanced antimetastatic activity (P < 0.05) of drug against B16F10 melanoma cells in C57BL/6 mice as compared to QR suspension. QR loaded GPSLN and GPNLC could be effectively lyophilized without much change in particle size and drug content using 15% w/v mannitol as cryoprotectant.


Subject(s)
Lipids/chemistry , Nanocapsules/administration & dosage , Nanocapsules/chemistry , Neoplasms, Experimental/drug therapy , Quercetin/administration & dosage , Quercetin/chemistry , Administration, Oral , Animals , Cell Line, Tumor , Colloids/chemistry , Drug Compounding , Female , Materials Testing , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/pathology , Treatment Outcome
10.
Pharm Res ; 30(10): 2675-93, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23756759

ABSTRACT

PURPOSE: The presence of 7-epidocetaxel in docetaxel injection and in vivo epimerisation has been reported to be the cause for development of tumor resistance to chemotherapy including docetaxel by inducing tumor cell protein cytochrome P450 1B1. The objective of this study was to determine systemic toxicity of Taxotere® containing 10% 7-epidocetaxel and to develop PEGylated liposomal injection that could resist epimerization in vivo. Another need for PEGylated liposomal delivery of docetaxel is to avoid reported hypersensitivity reactions of marketed products like Taxotere® and Duopafei® containing high concentration of tween-80. METHODS: The PEGylated liposomes loaded with docetaxel were prepared using thin film hydration method. The in vivo toxicity of Taxotere® containing 10% 7-epimer was studied in B16F10 experimental metastasis model. RESULTS: B16F10 experimental metastasis model using C57BL/6 mice injected with Taxotere® containing 10% 7-epimer showed higher weight loss as compared to Taxotere® containing no epimer at single dose of 40 mg/kg indicating higher systemic toxicity. Incubation of PEGylated liposomes with phosphate buffer saline (pH 7.4) containing 0.1% w/v Tween-80 for 48 h showed better resistance to docetaxel degradation when compared with Taxotere® injection indicating better in vivo stability of liposomal docetaxel. In addition, PEGylated liposomes showed enhanced in vitro cytotoxicity, against A549 and B16F10 cells, than Taxotere®. CONCLUSION: We can therefore expect less in vivo conversion of liposomal loaded docetaxel into 7-epimer, more passive targeting to tumor tissues, decreased 7-epimer induced systemic toxicity and tumor resistance to chemotherapy compared to Taxotere®. Further in vivo studies are needed to ascertain these facts.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Carriers/chemistry , Melanoma, Experimental/drug therapy , Polyethylene Glycols/chemistry , Taxoids/administration & dosage , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Docetaxel , Female , Humans , Liposomes , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Molecular Structure , Solubility , Stereoisomerism , Surface Properties , Taxoids/adverse effects , Taxoids/chemistry , Taxoids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...