Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Exp Med Biol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38842787

ABSTRACT

Recent advancements in personalized treatments, such as anthracycline chemotherapy, coupled with timely diagnoses, have contributed to a decrease in cancer-specific mortality rates and an improvement in cancer prognosis. Anthracyclines, a potent class of antibiotics, are extensively used as anticancer medications to treat a broad spectrum of tumors. Despite these advancements, a considerable number of cancer survivors face increased risks of treatment complications, particularly the cardiotoxic effects of chemotherapeutic drugs like anthracyclines. These effects can range from subclinical manifestations to severe consequences such as irreversible heart failure and death, highlighting the need for effective management of chemotherapy side effects for improved cancer care outcomes. Given the lack of specific treatments, early detection of subclinical cardiac events post-anthracycline therapy and the implementation of preventive strategies are vital. An interdisciplinary approach involving cardiovascular teams is crucial for the prevention and efficient management of anthracycline-induced cardiotoxicity. Various factors, such as age, gender, duration of treatment, and comorbidities, should be considered significant risk factors for developing chemotherapy-related cardiotoxicity. Tools such as electrocardiography, echocardiography, nuclear imaging, magnetic resonance imaging, histopathologic evaluations, and serum biomarkers should be appropriately used for the early detection of anthracycline-related cardiotoxicity. Furthermore, understanding the underlying biological mechanisms is key to developing preventive measures and personalized treatment strategies to mitigate anthracycline-induced cardiotoxicity. Exploring specific cardiotoxic mechanisms and identifying genetic variations can offer fresh perspectives on innovative, personalized treatments. This chapter aims to discuss cardiomyopathy following anthracycline therapy, with a focus on molecular mechanisms, preventive strategies, and emerging treatments.

2.
Adv Exp Med Biol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38811486

ABSTRACT

Colorectal cancer is a global health concern with high incidence and mortality rates. Conventional treatments like surgery, chemotherapy, and radiation therapy have limitations in improving patient survival rates. Recent research highlights the role of gut microbiota and intestinal stem cells in maintaining intestinal health and their potential therapeutic applications in colorectal cancer treatment. The interaction between gut microbiota and stem cells influences epithelial self-renewal and overall intestinal homeostasis. Novel therapeutic approaches, including immunotherapy, targeted therapy, regenerative medicine using stem cells, and modulation of gut microbiota, are being explored to improve treatment outcomes. Accordingly, this chapter provides an overview of the potential therapeutic applications of gut microbiota and intestinal stem cells in treating colorectal cancer.

3.
J Egypt Natl Canc Inst ; 35(1): 18, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37332027

ABSTRACT

BACKGROUND: Acute lymphoblastic leukemia (ALL) is a malignancy that leads to altered blast cell proliferation, survival, and maturation and eventually to the lethal accumulation of leukemic cells. Recently, dysregulated expression of various micro-RNAs (miRNAs) has been reported in hematologic malignancies, especially ALL. Cytomegalovirus infection can induce ALL in otherwise healthy individuals, so a more detailed evaluation of its role in ALL-endemic areas like Iran is required. METHODS: In this cross-sectional study, 70 newly diagnosed adults with ALL were recruited. The expression level of microRNA-155(miR-155) and microRNA-92(miR-92) was evaluated by real-time SYBR Green PCR. The correlations between the miRNAs mentioned above and the severity of disease, CMV infection, and acute graft vs. host disease after hematopoietic stem cell transplantation (HSCT) were assessed. B cell and T cell ALL distinction in the level of miRNAs was provided. RESULTS: After the statistical analysis, our results indicated a marked increase in the expression of miR-155 and miR-92 in ALL patients vs. healthy controls (*P = 0.002-*P = 0.03, respectively). Also, it was shown that the expression of miR-155 and miR-92 was higher in T cell ALL compared to B cell ALL (P = 0.01-P = 0.004, respectively), CMV seropositivity, and aGVHD. CONCLUSION: Our study suggests that the plasma signature of microRNA expression may act as a powerful marker for diagnosis and prognosis, providing knowledge outside cytogenetics. Elevation of miR-155 in plasma can be a beneficial therapeutic target for ALL patients, with consideration of higher plasma levels of miR-92 and miR-155 in CMV + and post-HSCT aGVHD patients.


Subject(s)
Cytomegalovirus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Cross-Sectional Studies , Graft vs Host Disease/genetics , Graft vs Host Disease/diagnosis , MicroRNAs/genetics , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Cytomegalovirus Infections/genetics
4.
Inflammopharmacology ; 31(1): 171-206, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36600055

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 has been a shocking disaster for healthcare systems worldwide since December 2019. This virus can affect all systems of the body and its symptoms vary from a simple upper respiratory infection to fatal complications including end-organ damage. On the other hand, the normal immune system plays a pivotal role in the recovery of infectious diseases such as COVID-19. However, occasionally, exaggerated immune system inflammation and an excessive synthesis of cytokines, known as a "cytokine storm," can deteriorate the patient's clinical condition. Secondary bacterial co-infection is another problem in COVID-19 which affects the prognosis of patients. Although there are a few studies about this complication, they suggest not using antibiotics commonly, especially broad-spectrum ones. During this pandemic, various approaches and therapeutics were introduced for treating COVID-19 patients. However, available treatments are not helpful enough, especially for complicated cases. Hence, in this era, cell therapy and regenerative medicine will create new opportunities. Therefore, the therapeutic benefits of mesenchymal stem cells, especially their antimicrobial activity, will help us understand how to treat COVID-19. Herein, mesenchymal stem cells may stop the immune system from becoming overactive in COVID-19 patients. On the other side, the stem cells' capacity for repair could encourage natural healing processes.


Subject(s)
Bacterial Infections , COVID-19 , Mesenchymal Stem Cells , Humans , Cytokine Release Syndrome , SARS-CoV-2
5.
Adv Exp Med Biol ; 1409: 83-110, 2023.
Article in English | MEDLINE | ID: mdl-35999347

ABSTRACT

Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.


Subject(s)
Mesenchymal Stem Cells , Tissue Engineering , Biocompatible Materials/therapeutic use , Regenerative Medicine , Mesenchymal Stem Cells/metabolism , Embryonic Stem Cells , Tissue Scaffolds , Dental Pulp
SELECTION OF CITATIONS
SEARCH DETAIL
...