Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Theor Biol ; 556: 111311, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36257351

ABSTRACT

Modeling of the biological neurons is a way to understand the architecture of neural networks of the brain. A complex brain network includes the synchronization between some groups of neurons. The dynamic behavior of interactions between groups of slave-master neurons in the neocortical network is unpredictable and challenging. The purpose of synchronizing a neural interaction is to reduce the synchronization error between the chaotic slave-master neurons. This paper uses a proportional-integral-derivative (PID) controller to synchronize master-slave neurons in the fractional-order of the neocortical network model based on dendritic spike frequency adaptation (DSFA) uncertainties and unknown disturbance effects. The purpose of this article is in two parts: First, we implemented the effect of previous states of the neuron conditions by fractional-order of the differential equations in the neocortical network model. Second, by synchronizing the FO neocortical master-slave model by PID controller, we investigated the connection strength of the complex network in chaotic point of view. The optimized PID coefficients and fractional-order were calculated using root mean square error (RMSE) criteria to control the membrane voltage synchronization. The chaotic behavior of the system was evaluated by numerical techniques such as attractor analysis and time series diagrams. The optimal RMSE value for master-slave neurons occurred at fractional-orders 0.89. It is shown that the synchronization of master-slave neurons improves over time, and eventually they are fully synchronized while the controller error is reduced.


Subject(s)
Neocortex , Neural Networks, Computer , Neurons/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...