Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Healthc Technol Lett ; 10(4): 73-79, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37529411

ABSTRACT

Today, the elderly population is increasing, and there are many drawbacks for them, especially defects in their knee joints which lead to improper gait. To solve this problem, their knee joint can be replaced with knee arthroplasty. In this letter, level of improvement in the human gait before and after total knee arthroplasty (TKA) surgery is investigated using the dynamic time warping (DTW) algorithm. For this purpose, several volunteers who have problems with their knees are incorporated in a test before and after TKA surgery. Then, the data of gait analysis is collected and the data is compared with a reference using the DTW algorithm. The outcome results illustrate an improvement of 89%-97% by the proposed algorithm after TKA surgery. Therefore, patients can see improvement with high accuracy and very fast that result in more use this technique in TKR surgery.

4.
Mikrochim Acta ; 187(5): 293, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32347392

ABSTRACT

A novel ammonia (NH3) chemical sensor is presented with ultra-high response, good selectivity, fast response, and long-term stability using detecting layer of polyaniline/cupric oxide nanoparticles supported on three-dimensional nitrogen-doped graphene-based frameworks (PANI/CuO@3D-NGF) nanocomposite. The NH3 gas sensing response of the PANI/CuO@3D-NGF nanocomposite was studied by resistivity method in low concentration range of 50 ppb-100 ppm at room temperature. The PANI/CuO@3D-NGF nanocomposite was prepared through in situ polymerization of PANI on the CuO@3D-NGF with a high surface area. Morphological and structural analysis revealed that the ultrathin 3D interconnected graphene substrate maximizes the surface area. It is also shown that the CuO nanoparticles offer active adsorption sites for free NH3 molecule. The PANI/CuO@3D-NGF nanocomposite gas sensor shows the response of 930% to 100 ppm NH3 with an outstanding low detection limit of 50 ppb and an average response time of 30 s at room temperature. The excellent sensing performance of the PANI/CuO@3D-NGF nanocomposite was attributed to 3D interconnected porous structure, remarkable enhancement of charge carriers as a result of CuO@3D-NGF, and modified π-interactions between molecules. Graphical abstract.

5.
Biomed Eng Lett ; 10(1): 163-170, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32175136

ABSTRACT

This letter describes a developed wireless sensor network based on a proposed algorithm for monitoring the environmental parameters in healthcare intentions. This proposed algorithm contains a frame with different packets that are implemented on the developed wireless sensor network. The developed wireless sensor network consists of one central node as well as four sensor node that has been equipped with various sensors such as temperature, humidity, CO, CO2, and passive infrared sensor. In order to test the presented algorithm and the developed wireless sensor network, the sensor nodes are situated in four different rooms in a hospital for recording essential parameters of the environment while the central node is put in the nurse station for warning to nurses. The obtained result of the proposed sensor nodes in comparison to gold standards shows root mean square error 1.1%, 0.35 ∘ C , 0.98% for humidity, temperature and gas, respectively. Also, the obtained results illustrate that the system gives accurate feedback from environmental temperature, humidity, and CO, and CO2 to the nurse station in order to increases the possibility of a healthy environment condition for patients.

6.
Healthc Technol Lett ; 5(6): 231-235, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30568799

ABSTRACT

The progress of microelectromechanical systems tends to fabricate miniature motion sensors that can be used for various purposes of biomedical systems, particularly on-body applications. A miniature wireless sensor is developed that not only monitors heartbeat and respiration rate based on chest movements but also identifies initial problems in the cardiorespiratory system, presenting a healthy measure defined based on height and length of the normal distribution of respiration rate and heartbeat. The obtained results of various tests are compared with two commercial sensors consisting of electrocardiogram sensor as well as belt sensor of respiration rate as a reference (gold standard), showing that the root-mean-square errors obtain <2.27 beats/min for a heartbeat and 0.93 breaths/min for respiration rate. In addition, the standard deviation of the errors reaches <1.26 and 0.63 for heartbeat and respiration rates, separately. According to the outcome results, the sensor can be considered an appropriate candidate for in-home health monitoring, particularly early detection of cardiovascular system problems.

7.
ACS Appl Mater Interfaces ; 9(18): 15662-15671, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28422485

ABSTRACT

In this research, a single-aligned nanofiber of pure TiO2 and gold nanoparticle (GNP)-TiO2 were fabricated using a novel electro-spinning procedure equipped with secondary electrostatic fields on highly sharp triangular and rectangular electrodes provided for gas sensing applications. The sol used for spinning nanofiber consisted of titanium tetraisopropoxide (C12H28O4Ti), acetic acid (CH3COOH), ethanol (C2H5OH), polyvinylpyrrolidone (PVP), and gold nanoparticle solution. FE-SEM, TEM, and XRD were used to characterize the single nanofiber. In triangular electrodes, the electrostatic voltage for aligning single nanofiber between electrodes depends on the angle tip of the electrode, which was around 1.4-2.1, 2-2.9, and 3.2-4.1 kV for 30°, 45°, and 60°, respectively. However, by changing the shape of the electrodes to rectangular samples and by increasing distance between electrodes from 100 to 200 µm, electro-spinning applied voltage decreased. Response of pure TiO2 single nanofiber sensor was measured for 30-200 ppb carbon monoxide gas. The triangular sample revealed better response and lower threshold than the rectangular sample. Adding appropriate amounts of GNP decreased the operating temperature and increased the responses. CO concentration threshold for the pure TiO2 and GNP-TiO2 triangular samples was about 5 ppb and 700 ppt, respectively.

8.
Materials (Basel) ; 6(5): 1994-2006, 2013 May 15.
Article in English | MEDLINE | ID: mdl-28809256

ABSTRACT

In this study, we first investigated changes seen in electrical and optical properties of a polymer light-emitting diode due to using different kinds of solvents and their mixture. Two-layer light emitting diodes with organic small molecules doped in a PVK polymer host were fabricated using (i) non-aromatic solvent chloroform with a high evaporation rate; (ii) aromatic solvent chlorobenzene with a low evaporation rate, and (iii) their mixture with different relative ratios. The effect of nano-scale layer thickness, surface roughness and internal nano-morphology on threshold voltage and the amount of electric current, the luminance and efficiency of a device were assessed. Results indicated the importance of majority charge carriers' type in the selection of solvent and tuning its properties. Then, the effect of thermal annealing on electrical and optical properties of polymer light emitting diodes was investigated. During the device fabrication, pre-annealing in 80 and/or 120 °C and post-annealing in 120 °C were performed. The nano-scale effect of annealing on polymer-metal interface and electric current injection was described thoroughly. A comparison between threshold voltage, luminance and electric current efficiency of luminescence for different annealing processes was undertaken, so that the best electric current efficiency of luminescence achieved at 120 °C pre-annealing accompanied with 120 °C post-annealing.

SELECTION OF CITATIONS
SEARCH DETAIL
...