Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Evol ; 30(8): 1751-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23676769

ABSTRACT

Both the origin of domesticated apple and the overall phylogeny of the genus Malus are still not completely resolved. Having this as a target, we built a 134,553-position-long alignment including two previously published chloroplast DNAs (cpDNAs) and 45 de novo sequenced, fully colinear chloroplast genomes from cultivated apple varieties and wild apple species. The data produced are free from compositional heterogeneity and from substitutional saturation, which can adversely affect phylogeny reconstruction. Phylogenetic analyses based on this alignment recovered a branch, having the maximum bootstrap support, subtending a large group of the cultivated apple sorts together with all analyzed European wild apple (Malus sylvestris) accessions. One apple cultivar was embedded in a monophylum comprising wild M. sieversii accessions and other Asian apple species. The data demonstrate that M. sylvestris has contributed chloroplast genome to a substantial fraction of domesticated apple varieties, supporting the conclusion that different wild species should have contributed the organelle and nuclear genomes to the domesticated apple.


Subject(s)
Genome, Chloroplast , Malus/classification , Malus/genetics , Phylogeny , Bayes Theorem , Evolution, Molecular
2.
Syst Biol ; 62(1): 50-61, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22851550

ABSTRACT

Correct rooting of the angiosperm radiation is both challenging and necessary for understanding the origins and evolution of physiological and phenotypic traits in flowering plants. The problem is known to be difficult due to the large genetic distance separating flowering plants from other seed plants and the sparse taxon sampling among basal angiosperms. Here, we provide further evidence for concern over substitution model misspecification in analyses of chloroplast DNA sequences. We show that support for Amborella as the sole representative of the most basal angiosperm lineage is founded on sequence site patterns poorly described by time-reversible substitution models. Improving the fit between sequence data and substitution model identifies Trithuria, Nymphaeaceae, and Amborella as surviving relatives of the most basal lineage of flowering plants. This finding indicates that aquatic and herbaceous species dominate the earliest extant lineage of flowering plants. [; ; ; ; ; .].


Subject(s)
Magnoliopsida/classification , Magnoliopsida/genetics , Phylogeny , DNA, Chloroplast/genetics , Genetic Heterogeneity , Models, Genetic , Sequence Alignment , Tracheophyta/classification , Tracheophyta/genetics
3.
Genome Biol Evol ; 3: 1340-8, 2011.
Article in English | MEDLINE | ID: mdl-22016337

ABSTRACT

Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae-the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny.


Subject(s)
Genome, Chloroplast , Gnetophyta/classification , Phylogeny , Seeds/genetics , Tracheophyta/classification , DNA, Chloroplast/genetics , Gnetophyta/genetics , Models, Genetic , Tracheophyta/genetics
4.
J Mol Evol ; 71(5-6): 319-31, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20976444

ABSTRACT

Noisy data, especially in combination with misalignment and model misspecification can have an adverse effect on phylogeny reconstruction; however, effective methods to identify such data are few. One particularly important class of noisy data is saturated positions. To avoid potential errors related to saturation in phylogenomic analyses, we present an automated procedure involving the step-wise removal of the most variable positions in a given data set coupled with a stopping criterion derived from correlation analyses of pairwise ML distances calculated from the deleted (saturated) and the remaining (conserved) subsets of the alignment. Through a comparison with existing methods, we demonstrate both the effectiveness of our proposed procedure for identifying noisy data and the effect of the removal of such data using a well-publicized case study involving placental mammals. At the least, our procedure will identify data sets requiring greater data exploration, and we recommend its use to investigate the effect on phylogenetic analyses of removing subsets of variable positions exhibiting weak or no correlation to the rest of the alignment. However, we would argue that this procedure, by identifying and removing noisy data, facilitates the construction of more accurate phylogenies by, for example, ameliorating potential long-branch attraction artefacts.


Subject(s)
Artifacts , Databases, Genetic , Genomics/methods , Phylogeny , Animals , Automation , Conserved Sequence/genetics , Likelihood Functions , Mammals , Models, Genetic
5.
Curr Microbiol ; 58(6): 554-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19194747

ABSTRACT

For the first time the production of an emulsifying agent during phthalic, 2,2'-diphenic and alpha-hydroxy-beta-naphthoic acids, phenanthrene, anthracene, fluorene, pyrene, fluoranthene, and chrysene degradation by white rot fungus Pleurotus ostreatus was found. The emulsifying activity of the cultivation medium after degradation of these compounds was assessed. Maximal activities were found in the presence of chrysene (48.4%) and alpha-hydroxy-beta-naphthoic acid (52.2%). Emulsifying activity inversely dependent on the water solubility of the compounds used. Versatile peroxidase was produced concurrently with the emulsifying agent.


Subject(s)
Emulsifying Agents/metabolism , Pleurotus/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...