Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38463966

ABSTRACT

Mammalian genomes fold into tens of thousands of long-range loops, but their functional role and physiologic relevance remain poorly understood. Here, using human post-mitotic neurons with rare familial Alzheimer's disease (FAD) mutations, we identify hundreds of reproducibly dysregulated genes and thousands of miswired loops prior to amyloid accumulation and tau phosphorylation. Single loops do not predict expression changes; however, the severity and direction of change in mRNA levels and single-cell burst frequency strongly correlate with the number of FAD-gained or -lost promoter-enhancer loops. Classic architectural proteins CTCF and cohesin do not change occupancy in FAD-mutant neurons. Instead, we unexpectedly find TAATTA motifs amenable to binding by DLX homeodomain transcription factors and changing noncoding RNAPolII signal at FAD-dynamic promoter-enhancer loops. DLX1/5/6 mRNA levels are strongly upregulated in FAD-mutant neurons coincident with a shift in excitatory-to-inhibitory gene expression and miswiring of multi-loops connecting enhancers to neural subtype genes. DLX1 overexpression is sufficient for loop miswiring in wildtype neurons, including lost and gained loops at enhancers with tandem TAATTA arrays and singular TAATTA motifs, respectively. Our data uncover a genome structure-function relationship between multi-loop miswiring and dysregulated excitatory and inhibitory transcriptional programs during lineage commitment of human neurons homozygously-engineered with rare FAD mutations.

2.
Mol Cell ; 81(6): 1130-1132, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33740473

ABSTRACT

Payne et al. (2020) combine in situ imaging and ex situ sequencing via spatially resolved unique molecular barcodes to query higher-order genome folding patterns in intact single nuclei from mouse embryos and human fibroblasts.


Subject(s)
Genome , Animals , Base Sequence , Mice
3.
FASEB J ; 33(4): 5287-5299, 2019 04.
Article in English | MEDLINE | ID: mdl-30698461

ABSTRACT

Overexpression of mouse neurogenin ( Neurog) 2 alone or in combination with mouse Neurog2/1 in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can rapidly produce high-yield excitatory neurons. Here, we report a detailed characterization of human neuronal networks induced by the expression of human NEUROG2 together with human NEUROG2/1 in hESCs using molecular, cellular, and electrophysiological measurements over 60 d after induction. Both excitatory synaptic transmission and network firing activity increased over time. Strikingly, inhibitory synaptic transmission and GABAergic cells were identified from NEUROG2/1 induced neurons (iNs). To illustrate the application of such iNs, we demonstrated that the heterozygous knock out of SCN2A, whose loss-of-function mutation is strongly implicated in autism risk, led to a dramatic reduction in network activity in the NEUROG2/1 iNs. Our findings not only extend our understanding of the NEUROG2/1-induced human neuronal network but also substantiate NEUROG2/1 iNs as an in vitro system for modeling neuronal and functional deficits on a human genetic background.-Lu, C., Shi, X., Allen, A., Baez-Nieto, D., Nikish, A., Sanjana, N. E., Pan, J. Q. Overexpression of NEUROG2 and NEUROG1 in human embryonic stem cells produces a network of excitatory and inhibitory neurons.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Line , Humans , Immunohistochemistry , Nerve Tissue Proteins/genetics , Patch-Clamp Techniques , Synaptic Transmission/genetics , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...