Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(14): 3884-3892, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38560917

ABSTRACT

An analytical model of highly nonequilibrium hopping transport of charge carriers in disordered organic semiconductors has been developed. In particular, the initial time interval is considered when transport is controlled by hops down in energy. The model is applied to the calculation of the separation probability of geminate pairs in a semiconductor with a Gaussian energy distribution of localized states. This probability determines the photogeneration efficiency. The temperature dependence of the separation probability is obtained and shown to be much weaker than predicted by the classical Onsager model, in agreement with experiment and Monte Carlo simulations. The field dependence is taken into account using a modified effective temperature method.

2.
J Phys Chem Lett ; 15(9): 2601-2605, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38416805

ABSTRACT

Spatial-energy correlations strongly influence charge and exciton transport in weakly ordered media such as organic semiconductors and nanoparticle assemblies. Focusing on cases with shorter-range interparticle interactions, we develop a unified analytic approach that allows us to calculate the temperature and field dependence of charge carrier mobility in organic quadrupole glasses and the temperature dependence of the diffusion coefficient of excitons in quantum dot solids. We obtain analytic expressions for the energy distribution of hopping centers, the characteristic escape time of charge/exciton from the energy well stemming from energy correlations around deep states, and the size of the well. The derived formulas are tested with Monte Carlo simulation results, showing good agreement and providing simple analytic expressions for analysis of charge and exciton mobility in a broad range of partially ordered media.

3.
J Phys Chem Lett ; 14(35): 7892-7896, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37639665

ABSTRACT

An analytical description of the separation probability of a geminate pair in organic semiconductors is given. The initial diffusion of "hot" twins is anomalously strong due to energy disorder. This circumstance significantly increases the photogeneration quantum yield at low temperatures and weakens its temperature dependence relative to predictions of the Onsager model, in agreement with Monte Carlo and experimental results.

4.
J Phys Chem Lett ; 14(1): 214-220, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36583652

ABSTRACT

We apply density functional theory to study carrier mobility in a γ-phosphorus carbide monolayer. Although previous calculations predicted high and anisotropic mobility in this material, we show that the mobility can be significantly influenced by common antisite defects. We demonstrate that at equilibrium concentrations defects do not inhibit carrier mobility up to temperatures of 1000 K. However, defects can change the mobility at high nonequilibrium concentrations of about 10-4 to 10-2 defects per atom. At the low end of this concentration range, defects act as traps for charge carriers and inhibit their mobility. At the high end of this range, defects change the effective carrier masses and deformation potentials, and they can lead to both an increase and a decrease in mobility. We also report the Raman and IR spectra associated with antisite defects. We predict new vibrational modes and shifts of the existing modes due to the defects.

5.
J Phys Chem Lett ; 12(13): 3436-3442, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33789049

ABSTRACT

The existence of two novel hybrid two-dimensional (2D) monolayers, 2D B3C2P3 and 2D B2C4P2, has been predicted based on the density functional theory calculations. It has been shown that these materials possess structural and thermodynamic stability. 2D B3C2P3 is a moderate band gap semiconductor, while 2D B2C4P2 is a zero band gap semiconductor. It has also been shown that 2D B3C2P3 has a highly tunable band gap under the effect of strain and substrate engineering. Moreover, 2D B3C2P3 produces low barriers for dissociation of water and hydrogen molecules on its surface, and shows fast recovery after desorption of the molecules. The novel materials can be fabricated by carbon doping of boron phosphide and directly by arc discharge and laser ablation and vaporization. Applications of 2D B3C2P3 in renewable energy and straintronic nanodevices have been proposed.

6.
J Phys Chem Lett ; 12(1): 620-626, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33382627

ABSTRACT

Defects are inevitably present in two-dimensional (2D) materials and usually govern their various properties. Here, a comprehensive density functional theory-based investigation of seven kinds of point defects in a recently produced γ allotrope of 2D phosphorus carbide (γ-PC) is conducted. The defects, such as antisites, single C or P, and double C and P and C and C vacancies, are found to be stable in γ-PC, while the Stone-Wales defect is not presented in γ-PC due to its transition-metal dichalcogenides-like structure. The formation energies, stability, and surface density of the considered defect species as well as their influence on the electronic structure of γ-PC is systematically identified. The formation of point defects in γ-PC is found to be less energetically favorable than in graphene, phosphorene, and MoS2. Meanwhile, defects can significantly modulate the electronic structure of γ-PC by inducing hole/electron doping. The predicted scanning tunneling microscopy images suggest that most of the point defects are easy to distinguish from each other and that they can be easily recognized in experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...