Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Elife ; 82019 01 09.
Article in English | MEDLINE | ID: mdl-30624206

ABSTRACT

The integrated stress response (ISR) attenuates the rate of protein synthesis while inducing expression of stress proteins in cells. Various insults activate kinases that phosphorylate the GTPase eIF2 leading to inhibition of its exchange factor eIF2B. Vanishing White Matter (VWM) is a neurological disease caused by eIF2B mutations that, like phosphorylated eIF2, reduce its activity. We show that introduction of a human VWM mutation into mice leads to persistent ISR induction in the central nervous system. ISR activation precedes myelin loss and development of motor deficits. Remarkably, long-term treatment with a small molecule eIF2B activator, 2BAct, prevents all measures of pathology and normalizes the transcriptome and proteome of VWM mice. 2BAct stimulates the remaining activity of mutant eIF2B complex in vivo, abrogating the maladaptive stress response. Thus, 2BAct-like molecules may provide a promising therapeutic approach for VWM and provide relief from chronic ISR induction in a variety of disease contexts.


Subject(s)
Brain Diseases/etiology , Eukaryotic Initiation Factor-2B/metabolism , Stress, Psychological/complications , White Matter/pathology , Animals , Astrocytes/pathology , Brain Diseases/pathology , Brain Diseases/prevention & control , Chronic Disease , Eukaryotic Initiation Factor-2B/genetics , Humans , Male , Mice , Mutation , Nerve Tissue Proteins/metabolism , Oligodendroglia/pathology , Phosphorylation , Protein Biosynthesis , Proteome , Weight Gain
2.
J Pharmacol Toxicol Methods ; 94(Pt 1): 34-43, 2018.
Article in English | MEDLINE | ID: mdl-29684554

ABSTRACT

INTRODUCTION: The adenine model of kidney disease typically involves dietary delivery of adenine over several weeks. This model can be variable in its disease progression and can result in significant mortality. In the current study, the amount of adenine delivered to rats was controlled by utilizing oral gavage administration over a short period in an attempt to induce robust renal pathology while addressing variability and viability of the animals. METHODS: Adenine (150 or 200 mg/kg) was administered via oral gavage for 10 consecutive days, and assessed over a total of 20 days. RESULTS: Both adenine dose groups manifested pathophysiological features of kidney disease such as proteinuria, elevated serum creatinine and BUN, and tubulointerstitial fibrosis. The animals also displayed a decline in glomerular filtration rate. Renal mRNA expression of genes associated with injury, inflammation, and fibrosis (i.e., Col1a1, Acta2, Serpine1, Timp1, Fn-Eda, Tgfb1, Ccl2, Nlrp3, Aqp1 and Ccnd1) were elevated as were urinary biomarkers that have translational utility (i.e., clusterin, KIM-1, MCP-1, OPN, NGAL, B2M, calbindin, and cystatin C). All disease endpoints were more pronounced in the 200 mg/kg group, however, while measures of tissue fibrosis were sustained, there was partial recovery by day 20 in functional readouts. No mortality was observed in either dose group. DISCUSSION: Short-term delivery of adenine via precise gavage delivery induced a robust model with hallmarks of fibrotic kidney disease, had limited variance between animals, and no animal morbidity within the 20 days studied. This model represents a methodical alternative to long-term dietary dosing of adenine.


Subject(s)
Adenine/administration & dosage , Fibrosis/chemically induced , Kidney Diseases/chemically induced , Kidney/drug effects , Administration, Oral , Animals , Biomarkers/urine , Fibrosis/metabolism , Fibrosis/urine , Glomerular Filtration Rate/drug effects , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/urine , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/urine , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
3.
J Orthop Res ; 2018 Feb 11.
Article in English | MEDLINE | ID: mdl-29430715

ABSTRACT

Osteoarthritis (OA) is a degenerative form of arthritis that can result in loss of joint function and chronic pain. The pathological pain state that develops with OA disease involves plastic changes in the peripheral and central nervous systems, however, the cellular mechanisms underlying OA are not fully understood. We characterized the medial meniscal tear (MMT) surgical model and the intra-articular injection of monosodium iodoacetate (MIA) chemical model of OA in rats. Both models produced histological changes in the knee joint and associated bones consistent with OA pathology. Both models also increased p38 activation in the L3, but not L4 dorsal root ganglia (DRG), increased tyrosine hydroxylase immunostaining in the L3 DRG indicating sympathetic sprouting, and increased phosphorylated (p)CREB in thalamic neurons. In MIA-OA, but not MMT-OA rats, p38 and pERK were increased in the spinal cord, and pCREB was enhanced in the prefrontal cortex. Using in vivo electrophysiology, elevated spontaneous activity and increased responsiveness of wide dynamic range neurons to stimulation of the knee was found in both models. However, a more widespread sensitization was observed in the MIA-OA rats as neurons with paw receptive fields spontaneously fired at a greater rate in MIA-OA than MMT-OA rats. Taken together, the MIA and MMT models of OA share several common features associated with histopathology and sensitization of primary somatosensory pathways, but, observed differences between the models highlights unique consequences of the related specific injuries, and these differences should be considered when choosing an OA model and when interpreting data outcomes. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

4.
J Am Soc Nephrol ; 28(12): 3616-3626, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28827403

ABSTRACT

Targeted delivery of a therapeutic agent to a site of pathology to ameliorate disease while limiting exposure at undesired tissues is an aspirational treatment scenario. Targeting diseased kidneys for pharmacologic treatment has had limited success. We designed an approach to target an extracellular matrix protein, the fibronectin extra domain A isoform (FnEDA), which is relatively restricted in distribution to sites of tissue injury. In a mouse unilateral ureteral obstruction (UUO) model of renal fibrosis, injury induced significant upregulation of FnEDA in the obstructed kidney. Using dual variable domain Ig (DVD-Ig) technology, we constructed a molecule with a moiety to target FnEDA and a second moiety to neutralize TGF-ß After systemic injection of the bispecific TGF-ß + FnEDA DVD-Ig or an FnEDA mAb, chemiluminescent detection and imaging with whole-body single-photon emission computed tomography (SPECT) revealed significantly higher levels of each molecule in the obstructed kidney than in the nonobstructed kidney, the ipsilateral kidney of sham animals, and other tissues. In comparison, a systemically administered TGF-ß mAb accumulated at lower concentrations in the obstructed kidney and exhibited a more diffuse whole-body distribution. Systemic administration of the bispecific DVD-Ig or the TGF-ß mAb (1-10 mg/kg) but not the FnEDA mAb attenuated the injury-induced collagen deposition detected by immunohistochemistry and elevation in Col1a1, FnEDA, and TIMP1 mRNA expression in the obstructed kidney. Overall, systemic delivery of a bispecific molecule targeting an extracellular matrix protein and delivering a TGF-ß mAb resulted in a relatively focal uptake in the fibrotic kidney and reduced renal fibrosis.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Kidney Diseases/drug therapy , Kidney/drug effects , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Disease Models, Animal , Extracellular Matrix/metabolism , Fibronectins/chemistry , Fibrosis/drug therapy , Humans , Hybridomas/metabolism , Kidney/diagnostic imaging , Kidney/pathology , Male , Mice , Tomography, Emission-Computed, Single-Photon , Ureter/pathology
5.
Eur J Pharmacol ; 788: 1-11, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27288879

ABSTRACT

Adenosine (ADO) is an important regulatory purine nucleoside that accumulates at sites of inflammation and tissue injury including in diseases associated with renal pathology. Endogenous levels of ADO may be increased by inhibiting the ADO-metabolizing enzyme, ADO kinase (AK). AK inhibitors have demonstrated protection in rodent models of diabetic nephropathy. To further investigate AK inhibition as a potential mechanism for renal protection, A-306989, a potent non-nucleoside AK inhibitor, was examined in both in vitro and in vivo assays of renal injury. A-306989 prevented podocyte damage (disruption of actin cytoskeleton) and increased podocyte survival following puromycin aminonucleoside (PAN) application in both mouse and human conditionally immortalized podocytes. Prophylactic oral administration of A-306989 (1.5, 5 and 15mg/kg) reduced proteinuria in a dose-dependent manner and repressed pro-inflammatory/fibrotic gene up-regulation; A-306989 was also efficacious when administered two days following the PAN-insult. A-306989 (10 and 30mg/kg) also significantly reduced proteinuria and macrophage infiltration in a rat model of glomerulonephritis. Finally, A-306989 (15 and 50mg/kg) reduced the expression levels of pro-inflammatory/fibrotic genes, and reduced macrophage infiltration (50mg/kg), but did not affect the deposition of interstitial collagen in fibrotic kidneys from mice with unilateral ureter obstruction. A-306989 also had beneficial actions on "quality of life" measures including improving body weight loss. Thus, these data indicate that enhancement of endogenous ADO levels by A-306989 can positively modulate renal pathology and mimic some of the previously reported beneficial actions of ADO A2A receptor agonists.


Subject(s)
Adenosine Kinase/antagonists & inhibitors , Basement Membrane/diagnostic imaging , Cytoprotection/drug effects , Kidney/cytology , Kidney/injuries , Podocytes/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Fibrosis , Kidney/drug effects , Kidney/pathology , Male , Mice , Podocytes/cytology , Podocytes/metabolism , Puromycin Aminonucleoside/toxicity , Rats
6.
Neuropharmacology ; 63(4): 606-12, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22613839

ABSTRACT

Calcium-mediated pathologic activation of the cysteine protease calpain has been linked to neurodegenerative disorders such as Alzheimer's disease (AD) through the cleavage of proteolytic substrates that negatively affect neuronal function. Hyperphosphorylation of the microtubule-associated protein tau and the subsequent aggregation of tau filaments resulting in the intracellular formation of neurofibrillary tangles are recognized as key etiological factors in AD pathology. Cyclin-dependent kinase 5 (Cdk5), a major kinase responsible for tau hyperphosphorylation in the AD brain, becomes hyperactivated through calpain-mediated cleavage-conversion of the Cdk5 regulatory protein p35 to p25. In the present study, we examined the effects of the novel small-molecule calpain inhibitor A-705253 in acute models of tau hyperphosphorylation in vitro and in vivo. In hippocampal slices in vitro, lowering medium temperature to 33 °C increased tau phosphorylation in which incubation with A-705253 blocked low temperature-induced tau phosphorylation as measured by Western blot analysis. Pentobarbital-induced hypothermia or acute systemic LPS treatment in normal mice increased tau phosphorylation in hippocampal CA3 mossy fibers, as measured by immunohistochemistry, whereas acute A-705253 pretreatment prevented the stress-induced tau hyperphosphorylation in both models. In support of a Cdk5-mediated mechanism, A-705253 administered for two weeks in the drinking water of six month-old prepathogenic 3x Tg-AD mice resulted in decreased expression of the calpain proteolytic p25 fragment. Taken together, results of these studies suggest that calpain inhibition has potential utility in reducing tau hyperphosphorylation and may represent a novel disease-modifying approach in the treatment of AD.


Subject(s)
Benzamides/pharmacology , Calpain/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , Hippocampus/drug effects , Neurons/drug effects , Stress, Physiological/drug effects , tau Proteins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/prevention & control , Animals , Benzamides/therapeutic use , Calpain/metabolism , Cold Temperature/adverse effects , Cysteine Proteinase Inhibitors/therapeutic use , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , In Vitro Techniques , Male , Mice , Mice, Inbred Strains , Mice, Transgenic , Molecular Targeted Therapy , Mossy Fibers, Hippocampal/drug effects , Mossy Fibers, Hippocampal/metabolism , Neurons/metabolism , Neurons/pathology , Peptide Fragments/metabolism , Phosphorylation/drug effects , Protein Processing, Post-Translational/drug effects
7.
Neuropharmacology ; 60(2-3): 460-6, 2011.
Article in English | MEDLINE | ID: mdl-21044639

ABSTRACT

Histamine H(3) receptor antagonists enhance cognition in preclinical models and have been proposed as novel therapeutics for cognitive disorders, in particular Alzheimer's disease (AD). Increased neurotransmitter (e.g. acetylcholine and histamine) release associated with this pharmacology may lead to activation of postsynaptic signaling pathways relevant to cognition and neuroprotection, such as increased phosphorylation of CREB, a transcription factor germane to cognitive function, and the inhibitory residue (Ser-9) of GSK3ß, a primary tau kinase associated with AD pathology. In the present studies, acute administration of the H(3)-antagonist ABT-239 (0.01-1.0mg/kg i.p.) increased cortical CREB and S(9)-GSK3ß phosphorylation in CD1 mice. Donepezil, while increasing CREB phosphorylation, did not increase pS(9)-GSK3ß expression in contrast to ABT-239. Continuous (2-wk) s.c. infusion of ABT-239 (0.7 mg/kg/day) normalized reduced cortical CREB and hippocampal S(9)-GSK3ß phosphorylation observed in Tg2576 (APP) AD-transgenic mice. In addition, ABT-239 infusion reversed tau hyperphosphorylation in the spinal cord and hippocampus of TAPP (tau × APP) AD-transgenic mice. Interestingly, ABT-239 produced signaling changes (pS(9)-GSK3ß) in α7 nicotinic acetylcholine receptor (nAChR) knockout mice. In contrast to wild type, these mice do not exhibit α7 nAChR agonist induced phosphorylation, thus suggesting that H(3)-antagonist-mediated signaling is not dependent on ACh-stimulated α7 nAChR activation. In summary, results of these studies suggest that ABT-239 leads to biochemical signaling that promotes cognitive performance as well as attenuation of tau hyperphosphorylation, raising the intriguing possibility that H(3) antagonists have potential for both symptomatic and disease modifying benefit in the treatment of AD.


Subject(s)
Alzheimer Disease/metabolism , Benzofurans/metabolism , Cell Membrane/metabolism , Histamine H3 Antagonists/metabolism , Pyrrolidines/metabolism , Receptors, Histamine H3/metabolism , Signal Transduction/physiology , Alzheimer Disease/drug therapy , Animals , Benzofurans/pharmacology , Benzofurans/therapeutic use , CREB-Binding Protein/metabolism , Cell Membrane/drug effects , Female , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Histamine H3 Antagonists/pharmacology , Histamine H3 Antagonists/therapeutic use , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , Signal Transduction/drug effects , Treatment Outcome
8.
J Pharmacol Exp Ther ; 334(3): 875-86, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20504913

ABSTRACT

We previously reported that alpha7 nicotinic acetylcholine receptor (nAChR) agonism produces efficacy in preclinical cognition models correlating with activation of cognitive and neuroprotective signaling pathways associated with Alzheimer's disease (AD) pathology. In the present studies, the selective and potent alpha7 nAChR agonist 5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole (ABT-107) was evaluated in behavioral assays representing distinct cognitive domains. Studies were also conducted to address potential issues that may be associated with the clinical development of an alpha7 nAChR agonist. Specifically, ABT-107 improved cognition in monkey delayed matching to sample, rat social recognition, and mouse two-trial inhibitory avoidance, and continued to improve cognitive performance at injection times when exposure levels continued to decline. Rats concurrently infused with ABT-107 and donepezil at steady-state levels consistent with clinical exposure showed improved short-term recognition memory. Compared with nicotine, ABT-107 did not produce behavioral sensitization in rats or exhibit psychomotor stimulant activity in mice. Repeated (3 days) daily dosing of ABT-107 increased extracellular cortical acetylcholine in rats, whereas acute administration increased cortical extracellular signal-regulated kinase and cAMP response element-binding protein phosphorylation in mice, neurochemical and biochemical events germane to cognitive function. ABT-107 increased cortical phosphorylation of the inhibitory residue (Ser9) of glycogen synthase kinase-3, a primary tau kinase associated with AD pathology. In addition, continuous infusion of ABT-107 in tau/amyloid precursor protein transgenic AD mice reduced spinal tau hyperphosphorylation. These findings show that targeting alpha7 nAChRs may have potential utility for symptomatic alleviation and slowing of disease progression in the treatment AD, and expand the understanding of the potential therapeutic viability associated with the alpha7 nAChR approach in the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/drug effects , Acetylcholine/metabolism , Alzheimer Disease/chemically induced , Alzheimer Disease/psychology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/toxicity , Animals , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Cognition/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Donepezil , Electroencephalography/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycogen Synthase Kinase 3/antagonists & inhibitors , Indans/pharmacology , Indoles/pharmacokinetics , Indoles/pharmacology , Macaca mulatta , Male , Mice , Mice, Knockout , Nicotinic Agonists/pharmacokinetics , Nootropic Agents/pharmacology , Phosphorylation , Piperidines/pharmacology , Psychomotor Performance/drug effects , Quinuclidines/pharmacokinetics , Quinuclidines/pharmacology , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Social Perception , alpha7 Nicotinic Acetylcholine Receptor , tau Proteins/genetics , tau Proteins/toxicity
9.
Brain Res ; 1265: 65-74, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19230830

ABSTRACT

The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and has generated recent interest as a potential drug target for treating neurodegenerative disorders such as Alzheimer's disease (AD). The property of Ca(2+) permeation associated with alpha7 nAChR agonism may lead to Ca(2+)-dependent intracellular signaling that contribute to the procognitive and neuroprotective effects that have been described with this pharmacology. In this study, we investigated whether alpha7 nAChR agonism leads to increased phosphorylation of the inhibitory regulating amino acid residue Ser-9 on GSK3beta, a major kinase responsible for tau hyperphosphorylation in AD neuropathology. Immunohistochemical analysis revealed that the selective alpha7 agonist A-582941 increased S(9)-GSK3beta phosphorylation in mouse cingulate cortex and hippocampus that was not observed in alpha7 nAChR knock-out mice. A-582941 steady state exposure through continuous (2 wk) infusion also increased S(9)-GSK3beta phosphorylation in the hippocampus of Tg2576 (APP), as well as wild-type mice. Moreover, A-582941 continuous infusion decreased phosphorylation of tau in hippocampal CA3 Mossy fibers and spinal motoneurons in a hypothermia-induced tau hyperphosphorylation mouse model and AD double transgenic APP/tau mouse line, respectively. These studies demonstrate that inactivation of GSK3beta may be associated with alpha7 nAChR-induced signaling leading to attenuated tau hyperphosphorylation, raising the intriguing possibility that alpha7 nAChR agonism may have disease modifying benefit in the treatment of tauopathies, in particular AD.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Pyridazines/pharmacology , Pyrroles/pharmacology , Receptors, Nicotinic/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3 beta , Hippocampus/drug effects , Immunohistochemistry , Injections, Intraperitoneal , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation/drug effects , Pyridazines/administration & dosage , Pyrroles/administration & dosage , Receptors, Nicotinic/genetics , Signal Transduction/drug effects , alpha7 Nicotinic Acetylcholine Receptor , tau Proteins/genetics
10.
Brain Res ; 1250: 41-8, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19046950

ABSTRACT

Existing data on the expression of H(4) histamine receptor in the CNS are conflicting and inconclusive. In this report, we present the results of experiments that were conducted in order to elucidate H(4) receptor expression and localization in the brain, spinal cord, and dorsal root ganglia (DRG). Here we show that transcripts of H(4) receptor are present in all analyzed regions of the human CNS, including spinal cord, hippocampus, cortex, thalamus and amygdala, with the highest levels of H(4) mRNA detected in the spinal cord. In rat, H(4) mRNA was detected in cortex, cerebellum, brainstem, amygdala, thalamus and striatum. Very low levels of H(4) mRNA were detected in hypothalamus, and no H(4) signal was detected in the rat hippocampus. Fairly low levels of H(4) mRNA were detected in examined peripheral tissues including spleen and liver. Interestingly, strong expression of H(4) mRNA was detected in the rat DRG and spinal cord. Immunohistochemical analysis revealed expression of H(4) receptors on neurons in the rat lumbar DRG and in the lumbar spinal cord. Our observations provide evidence of the H(4) presence in both human and rodent CNS and offer some insight into possible role of H(4) in itch and pain.


Subject(s)
Brain/metabolism , Ganglia, Spinal/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Histamine/metabolism , Spinal Cord/metabolism , Animals , Cells, Cultured , Humans , Immunohistochemistry , Liver/metabolism , Male , Neuroglia/metabolism , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Receptors, Histamine/genetics , Receptors, Histamine H4 , Reverse Transcriptase Polymerase Chain Reaction , Spleen/metabolism
11.
CNS Neurosci Ther ; 14(1): 65-82, 2008.
Article in English | MEDLINE | ID: mdl-18482100

ABSTRACT

Among the diverse sets of nicotinic acetylcholine receptors (nAChRs), the alpha7 subtype is highly expressed in the hippocampus and cortex and is thought to play important roles in a variety of cognitive processes. In this review, we describe the properties of a novel biaryl diamine alpha7 nAChR agonist, A-582941. A-582941 was found to exhibit high-affinity binding and partial agonism at alpha7 nAChRs, with acceptable pharmacokinetic properties and excellent distribution to the central nervous system (CNS). In vitro and in vivo studies indicated that A-582941 activates signaling pathways known to be involved in cognitive function such as ERK1/2 and CREB phosphorylation. A-582941 enhanced cognitive performance in behavioral models that capture domains of working memory, short-term recognition memory, memory consolidation, and sensory gating deficit. A-582941 exhibited a benign secondary pharmacodynamic and tolerability profile as assessed in a battery of assays of cardiovascular, gastrointestinal, and CNS function. The studies summarized in this review collectively provide preclinical validation that alpha7 nAChR agonism offers a mechanism with potential to improve cognitive deficits associated with various neurodegenerative and psychiatric disorders.


Subject(s)
Cognition/drug effects , Nicotinic Agonists/pharmacology , Pyridazines/pharmacology , Pyrroles/pharmacology , Receptors, Nicotinic/physiology , Animals , Humans , alpha7 Nicotinic Acetylcholine Receptor
12.
Neurosci Res ; 60(3): 266-74, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18164502

ABSTRACT

The nicotinic acetylcholine receptors (nAChRs) play critical roles in neuronal transmission and modulation. Among the diverse nAChRs, the alpha7 subtype has been considered as a potential therapeutic target for treating cognitive deficits associated with neuropsychiatric and neurodegenerative diseases. Although a number of mechanisms including neurotransmitter and biochemical effects linking alpha7 nAChR activation and cognitive function are beginning to be described, the underlying molecular processes especially following repeated administration remain unclear. To address this, we have performed gene expression analysis in rats treated with nicotine and a selective alpha7 nAChR agonist, PNU-282987. Our results showed significant overlap in gene expression changes induced by PNU-282987 and nicotine, suggesting convergent pathways triggered by these compounds. Treatment with nicotine also resulted in regulation of a number of genes that were not regulated by PNU-282987, consistent with the interaction of nicotine with other nAChRs beyond the alpha7 subtype. Interestingly, these gene expression changes were observed 24 h post-dose, suggesting that both nicotine and PNU-282987 cause protracted changes in gene expression. Overall, our results identify gene expression changes that may contribute to further defining the roles of nAChR activation in cognitive function.


Subject(s)
Gene Expression Profiling , Hippocampus/drug effects , Hippocampus/physiology , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/physiology , Animals , Benzamides/pharmacology , Bridged Bicyclo Compounds/pharmacology , Rats , Rats, Sprague-Dawley , Transcription, Genetic/drug effects , Transcription, Genetic/physiology , alpha7 Nicotinic Acetylcholine Receptor
13.
J Neurosci ; 27(39): 10578-87, 2007 Sep 26.
Article in English | MEDLINE | ID: mdl-17898229

ABSTRACT

The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.8 nM) and human (Ki = 16.7 nM) alpha7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the alpha7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that alpha7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of alpha7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked alpha7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that alpha7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.


Subject(s)
Central Nervous System Agents/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Mental Processes/drug effects , Receptors, Nicotinic , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Animals , Cognition/drug effects , Cognition/physiology , Humans , Learning/drug effects , Learning/physiology , Macaca mulatta , Male , Mental Processes/physiology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Pyridazines/pharmacology , Pyrroles/pharmacology , Rats , Signal Transduction , Treatment Outcome , Xenopus , alpha7 Nicotinic Acetylcholine Receptor
14.
Neurosci Lett ; 410(1): 15-9, 2006 Dec 13.
Article in English | MEDLINE | ID: mdl-17055644

ABSTRACT

Selective and brain penetrating pharmacological antagonists for use in clarifying a role of alpha7 nicotinic acetylcholine receptors (nAChR) in behavioral paradigms are presently unavailable. Studies in alpha7 knock-out mice (KO) have not revealed convincing changes in behavioral phenotype, in particular measures of cognition that include contextual fear conditioning and spatial memory, which may be due to compensatory developmental changes. Therefore, an antisense oligonucleotide (aON) targeted toward the 3'- and 5'-UTR coding regions of the rat alpha7 nicotinic acetylcholine receptor was used. Following central injection of aON into the lateral ventricle of Long Evans rats for 6 days, treated rats exhibited a significant 42% and 25% decrease in alpha7 nAChR densities in hippocampus and cortex, respectively, as measured by [(3)H]-methyllycaconitine (MLA) binding. There was no change in alpha4beta2 densities measured by [(3)H]-cytisine binding. Acquisition of Morris Water Maze (MWM) performance, a measure of spatial memory, was impaired in aON-treated rats. In addition, a reduction in target platform crossings during a subsequent probe-trial was observed. These data demonstrate the ability of this aON to reduce hippocampal and cortical alpha7 nicotinic receptor densities associated with impaired MWM performance and support the specific involvement of the alpha7 nAChR in spatial learning and memory, a phenotype not affected in alpha7 KO mice.


Subject(s)
Memory Disorders/chemically induced , Oligodeoxyribonucleotides, Antisense/adverse effects , Receptors, Nicotinic/physiology , Space Perception/drug effects , Aconitine/analogs & derivatives , Aconitine/pharmacokinetics , Alkaloids/pharmacology , Animals , Azocines/pharmacology , Behavior, Animal/drug effects , Cerebral Cortex/drug effects , Dose-Response Relationship, Drug , Drug Interactions , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory Disorders/physiopathology , Nicotinic Antagonists/pharmacokinetics , Protein Binding/drug effects , Quinolizines/pharmacology , Rats , Rats, Long-Evans , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/genetics , Time Factors , Tritium/pharmacokinetics , alpha7 Nicotinic Acetylcholine Receptor
15.
Eur J Pharmacol ; 531(1-3): 108-17, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16438960

ABSTRACT

Previous studies have demonstrated that Fos-like immunoreactivity is increased in spinal dorsal horn neurons in several pain models, and have suggested that Fos-like immunoreactivity could be used as a marker of neurons activated by painful stimulation. In the present study, we evaluated nociceptive behaviors and spinal Fos-like immunoreactivity in a rat skin incision model of post-operative pain. In this model, evoked and non-evoked pain behaviors were observed at least for 2 days after paw surgery, an increased number of Fos-like immunoreactive neurons was observed in the spinal dorsal horn at lumbar levels 4-5 two-hour post-surgery. The number of Fos-like immunoreactive neurons was significantly greater in animals with skin-muscle incision compared to animals with skin-alone incision. Interestingly, spinal Fos-like immunoreactivity was quickly normalized in rats with paw surgery at later time points (8 and 24 h post-surgery), whereas nociceptive behaviors were still observed. Furthermore, at 24 h post-surgery, spinal Fos-like immunoreactivity induced by thermal stimulation (42, 44, 46, 48, 52 degrees C for 15 s) was not significantly different between sham animals and animals with surgery. In both groups, an increase in spinal Fos-like immunoreactive neurons was observed with increasing temperatures, with similar laminar distribution. Finally, systemic morphine reduced post-operative pain and Fos-like immunoreactivity in a naloxone reversible manner, with greater potency and efficacy on behavioral endpoints than on Fos-like immunoreactivity. These results demonstrate a different profile of nociceptive behaviors and spinal Fos-like immunoreactivity in the rat skin incision model, suggesting a limited potential of spinal Fos-like immunoreactivity to study post-surgical pain and its pharmacology.


Subject(s)
Pain, Postoperative/physiopathology , Posterior Horn Cells/chemistry , Proto-Oncogene Proteins c-fos/analysis , Spinal Cord/chemistry , Analgesics, Opioid/pharmacology , Animals , Dermatologic Surgical Procedures , Dose-Response Relationship, Drug , Hindlimb/surgery , Immunohistochemistry , Male , Morphine/pharmacology , Muscles/surgery , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pain, Postoperative/prevention & control , Posterior Horn Cells/drug effects , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Temperature , Time Factors
16.
Neuropharmacology ; 50(5): 521-31, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16324724

ABSTRACT

The dopamine D4 receptor has been investigated for its potential role in several CNS disorders, notably schizophrenia and more recently, erectile dysfunction. Whereas studies have investigated dopamine D4 receptor-mediated signaling in vitro, there have been few, if any, attempts to identify dopamine D4 receptor signal transduction pathways in vivo. In the present studies, the selective dopamine D4 agonist PD168077 induces c-Fos expression and extracellular signal regulated kinase (ERK) phosphorylation in the hypothalamic paraventricular nucleus (PVN), a site known to regulate proerectile activity. The selective dopamine D4 receptor antagonist A-381393 blocked both c-Fos expression and ERK1/2 phosphorylation produced by PD168077. In addition, PD168077-induced ERK1/2 phosphorylation was prevented by SL327, an inhibitor of ERK1/2 phosphorylation. Interestingly, treatment with A-381393 alone significantly reduced the amount of Fos immunoreactivity as compared to basal expression observed in vehicle-treated controls. Dopamine D4 receptor and c-Fos coexpression in the PVN was observed using double immunohistochemical labeling, suggesting that PD168077-induced signaling may result from direct dopamine D4 receptor activation. Our results demonstrate functional dopamine D4 receptor expression and natural coupling in the PVN linked to signal transduction pathways that include immediate early gene and MAP kinase activation. Further, the ability of the selective dopamine D4 antagonist A-381393 alone to reduce c-Fos expression below control levels may imply the presence of a tonic dopamine D4 receptor activation under basal conditions in vivo. These findings provide additional evidence that the PVN may be a site of dopamine D4 receptor-mediated proerectile activity.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Genes, fos/physiology , Paraventricular Hypothalamic Nucleus/metabolism , Receptors, Dopamine D4/physiology , Signal Transduction/physiology , Aminoacetonitrile/analogs & derivatives , Aminoacetonitrile/pharmacology , Animals , Benzamides/pharmacology , Benzimidazoles/pharmacology , Cell Count/methods , Dose-Response Relationship, Drug , Drug Interactions , Enzyme Inhibitors/pharmacology , Gene Expression/drug effects , Immunohistochemistry/methods , Male , Phosphorylation/drug effects , Piperazines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D4/agonists , Receptors, Dopamine D4/antagonists & inhibitors , Time Factors
17.
Epilepsia ; 46(9): 1349-61, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16146429

ABSTRACT

PURPOSE: The objective of this study was to characterize the antiseizure and safety profiles of ABT-769 [(R)-N-(2 amino-2-oxoethyl)spiro[2,5]octane-1-carboxamide]. METHODS: ABT-769 was tested for protection against maximal electroshock and pentylenetetrazol-induced seizures in the mouse and for suppression of electrically kindled amygdala seizures and spontaneous absence-like seizures in the rat. The central nervous system safety profile was evaluated by using tests of motor coordination and inhibitory avoidance. The potential for liver toxicity was assessed in vitro by using a mitochondrial fatty acid beta-oxidation assay. Teratogenic potential was assessed in the mouse. RESULTS: ABT-769 blocked maximal electroshock, subcutaneous pentylenetetrazol and intravenous pentylenetetrazol-induced seizures with median effective dose (ED50) values of 0.25, 0.38, and 0.11 mmol/kg, p.o., respectively. No tolerance was evident in the intravenous pentylenetetrazol test after twice-daily dosing of ABT-769 (0.3 mmol/kg, p.o.) for 4 days. ABT-769 blocked absence-like spike-wave discharge (ED50, 0.15 mmol/kg, p.o.) and shortened the cortical and amygdala afterdischarge duration of kindled seizures (1 and 3 mmol/kg, p.o.). The protective indices (ED50 rotorod impairment/ED50 seizure protection) were 4.8, 3.2, and 10.9 in the maximal electroshock, subcutaneous pentylenetetrazol and intravenous pentylenetetrazol seizure tests, respectively. ABT-769 did not affect inhibitory avoidance performance (0.1-1 mmol/kg, p.o.). ABT-769 did not affect mitochondrial fatty acid beta-oxidation or induce neural tube defects. CONCLUSIONS: ABT-769 is an efficacious antiseizure agent in animal models of convulsive and nonconvulsive epilepsy and has a favorable safety profile. ABT-769 has a broad-spectrum profile like that of valproic acid. Its profile is clearly different from those of carbamazepine, phenytoin, lamotrigine, topiramate, vigabatrin, and tiagabine.


Subject(s)
Anticonvulsants/pharmacology , Anticonvulsants/toxicity , Behavior, Animal/drug effects , Epilepsy/prevention & control , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacology , Abnormalities, Drug-Induced/epidemiology , Amygdala/drug effects , Amygdala/physiopathology , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Electroshock , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy, Absence/chemically induced , Epilepsy, Absence/metabolism , Epilepsy, Absence/prevention & control , Humans , Injections, Intravenous , Injections, Subcutaneous , Kindling, Neurologic/drug effects , Kindling, Neurologic/metabolism , Kindling, Neurologic/physiology , Male , Mice , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Pentylenetetrazole/administration & dosage , Rats , Rats, Wistar , Species Specificity , Spiro Compounds/pharmacology , Spiro Compounds/toxicity , Valproic Acid/toxicity
18.
Brain Res Mol Brain Res ; 129(1-2): 67-79, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15469883

ABSTRACT

In the mammalian central nervous system (CNS), a family of alpha and beta subunits (alpha2-7, beta2-4) assemble to form both hetero- and homopentameric neuronal nicotinic acetylcholine receptors (nAChRs). In contrast to alpha4beta2 and alpha7, the predominant brain subtypes, far less is known regarding the functional expression and significance of alpha3-containing nAChRs in the CNS. In trying to better understand the role alpha3 in the CNS, an antisense knockdown strategy was utilized in the present studies. Specifically, Isis 106567 was identified out of 80 antisense oligonucleotides (aONs) designed and screened for their ability to reduce alpha3 mRNA expression in PC-12 cells. In addition to reducing alpha3 mRNA by greater than 75%, Isis 106567 attenuated nicotine-induced calcium influx in alpha3-expressing F11 cells. In vivo studies revealed significant reduction of alpha3 mRNA levels in both thalamus and medial habenula, regions known to express alpha3, following continuous (7 days) intracerebroventricular (i.c.v.) infusion of Isis 106567 in rats. Consistent with functional alpha3 knockdown, epibatidine-induced c-Fos expression in the medial habenula was attenuated in aON-treated rats. Known physiological responses elicited by epibatidine, such as hypothermia and micturition, were not affected by alpha3 aON treatment. However, the incidence of epibatidine-induced seizures was reduced in alpha3-antisense aON-treated rats, suggesting that alpha3 may be involved in mediating seizures produced by the nAChR agonist. Results of our studies suggest that Isis 106567 may be a useful in vivo tool for characterizing the functional significance of alpha3 expression in the CNS.


Subject(s)
Oligonucleotides, Antisense/metabolism , Protein Subunits/metabolism , Receptors, Nicotinic/metabolism , Animals , Behavior, Animal/drug effects , Brain/cytology , Brain/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium/metabolism , In Situ Hybridization , Male , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Nicotinic Agonists/pharmacology , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , PC12 Cells , Protein Subunits/genetics , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Pyridines/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/genetics
19.
J Neurophysiol ; 90(4): 2702-10, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12815018

ABSTRACT

It is well established that the vanilloid receptor, VR1, is an important peripheral mediator of nociception. VR1 receptors are also located in several brain regions, yet it is uncertain whether these supraspinal VR1 receptors have any influence on the nociceptive system. To investigate a possible nociceptive role for supraspinal VR1 receptors, capsaicin (10 nmol in 0.4 microl) was microinjected into either the dorsal (dPAG) or ventral (vPAG) regions of the periaqueductal gray. Capsaicin-related effects on tail flick latency (immersion in 52 degrees C water) and on neuronal activity (on-, off-, and neutral cells) in the rostral ventromedial medulla (RVM) were measured in lightly anesthetized rats. Administration of capsaicin into the dPAG but not the vPAG caused an initial hyperalgesic response followed later by analgesia (125 +/- 20.96 min postinjection). The tail flick-related burst in on-cell activity was triggered earlier in the hyperalgesic phase and was delayed or absent during the analgesic phase. Spontaneous activity of on-cells increased at the onset of the hyperalgesic phase and decreased before and during the analgesic phase. The tail flick-related pause in off-cell activity as well as spontaneous firing for these cells was unchanged in the hyperalgesic phase. During the analgesic phase, off-cells no longer paused during noxious stimulation and had increased levels of spontaneous activity. Neutral cell firing was unaffected in either phase. Pretreatment with the VR1 receptor antagonist, capsazepine (10 nmol in 0.4 microl), into the dPAG blocked the capsaicin-induced hyperalgesia as well as the corresponding changes in on- and off-cell activity. VR1 receptor immunostaining was observed in the dPAG of untreated rats. Microinjection of capsaicin likely sensitized and then desensitized dPAG neurons affecting nocifensive reflexes and RVM neuronal activity. These results suggest that supraspinal VR1 receptors in the dPAG contribute to descending modulation of nociception.


Subject(s)
Action Potentials/drug effects , Capsaicin/pharmacology , Medulla Oblongata/drug effects , Pain Measurement/drug effects , Periaqueductal Gray/drug effects , Action Potentials/physiology , Animals , Hot Temperature/adverse effects , Male , Medulla Oblongata/physiology , Neurons/drug effects , Neurons/physiology , Pain Measurement/methods , Periaqueductal Gray/physiology , Rats , Rats, Sprague-Dawley
20.
Pharmacol Biochem Behav ; 72(3): 741-50, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12175472

ABSTRACT

The selective H(3) receptor agonist (R)-alpha-methylhistamine [(R)-alpha-MeHA] stimulates drinking in the adult rat. In the present study, we investigated the role of the H(3) receptor in mediating this behavior in a new dipsogenia model using the CD-1 mouse. In addition, the putative inverse agonists ciproxifan, thioperamide and clobenpropit; the reported antagonist (1R,2R)-4-[2-(5,5-dimethylhex-1-ynyl)cyclopropyl]imidazole (GT-2331); and the putative neutral antagonist/weak partial agonist proxyfan were evaluated for possible differences in pharmacological activity in this new model. Water intake increased over baseline in a dose-related manner following intraperitoneal administration of 80, 160 or 240 micromol/kg (R)-alpha-MeHA, but this effect was dependent on age (P30

Subject(s)
Disease Models, Animal , Drinking/drug effects , Histamine Agonists/pharmacology , Histamine Antagonists/pharmacology , Receptors, Histamine H3/physiology , Animals , Dose-Response Relationship, Drug , Drinking/physiology , Ligands , Male , Mice , Rats , Rats, Sprague-Dawley , Thirst/drug effects , Thirst/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...