Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38874269

ABSTRACT

Effective resource allocation in the agri-food sector is essential in mitigating environmental impacts and moving toward circular food supply chains. The potential of integrating life cycle assessment (LCA) with machine learning has been highlighted in recent studies. This hybrid framework is valuable not only for assessing food supply chains but also for improving them toward a more sustainable system. Yet, an essential step in the optimization process is defining the optimization boundaries, or minimum and maximum quantities for the variables. Usually, the boundaries for optimization variables in these studies are obtained from the minimum and maximum values found through interviews and surveys. A deviation in these ranges can impact the final optimization results. To address this issue, this study applies the Delphi method for identifying variable optimization boundaries. A hybrid environmental assessment framework linking LCA, multilayer perceptron artificial neural network, the Delphi method, and genetic algorithm was used for optimizing the pomegranate production system. The results indicated that the suggested framework holds promise for achieving substantial mitigation in environmental impacts (potential reduction of global warming by 46%) within the explored case study. Inclusion of the Delphi method for variable boundary determination brings novelty to the resource allocation optimization process in the agri-food sector. Integr Environ Assess Manag 2024;00:1-11. © 2024 SETAC.

2.
Int J Environ Health Res ; 34(5): 2353-2365, 2024 May.
Article in English | MEDLINE | ID: mdl-37621018

ABSTRACT

The life cycle assessment (LCA) methodology currently covers a limited number of human health-related impact categories. Microbiological food safety is an essential aspect for the selection of an appropriate food production system and has been neglected in the LCA so far. A framework for the inclusion of a microbiological food safety indicator, expressed as disability-adjusted life year (DALY) value of the consumed food product to the human health damage category (end-point) was created, and applied in a case study model on the cooked-chilled meals as the ready-to-eat meals can be associated with the occurrence of foodborne illness cases and outbreaks. This study suggests a framework for the inclusion of microbiological risk caused by Bacillus cereus associated with the consumption of ready-to-eat meals (in Belgium) in the LCA. The results indicated that the microbiological risk of one package of the investigated ready-to-eat meal was 1.95 × 10-6 DALY, and the obtained DALY value was included as an impact category in the LCA methodology. Inclusion of other categories of food safety (including chemical safety hazards, pesticide residues, heavy metals, and mycotoxins) in LCA could be done in the same fashion.


Subject(s)
Food Microbiology , Foodborne Diseases , Humans , Animals , Food Handling/methods , Food Safety , Life Cycle Stages
SELECTION OF CITATIONS
SEARCH DETAIL
...