Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Exp Neurol ; 318: 135-144, 2019 08.
Article in English | MEDLINE | ID: mdl-31028828

ABSTRACT

Inhibitors of cell cycle proteins are known to reduce glial activation and to be neuroprotective in a number of settings. In the context of intracerebral grafting, glial activation is documented to correlate with graft rejection. However, the effects of modification of glial reactivity following grafting in the CNS are poorly understood. Moreover, it is not completely clear if the glial cells themselves trigger the rejection process, or are they secondarily activated. The present study investigated the effect of microglial inhibition by the cyclin-dependant kinase 5 (CDK5) inhibitor roscovitine following intracerebral transplantation in the rodent model of Parkinson's disease. Single cell suspension of rat E14 ventral mesencephalic tissue was transplanted to the dopamine-depleted striatum of unilaterally 6-hydroxydopamine (6-OHDA) lesioned male Sprague-Dawley rats. Experimental animals received injections of roscovitine (20 mg/kg) or a vehicle solution three times following the procedure. Immunohistochemistry was carried out on Day 7 and Day 28 to quantitatively describe the glial reaction adjacent to grafts. The data confirm that systemic roscovitine treatment significantly reduced microglial recruitment adjacent to the grafts on Day 28, without exhibiting significant effects on astroglia. However, this was not found to correlate with elevated numbers of neurons in the grafts. Moreover, microglial reaction surrounding grafts was less pronounced compared to control animals, subjected to the mechanical influence only, even without roscovitine treatment. Our results are the first to show the effect of cell cycle inhibition in the context of neuronal transplantation. The findings suggest that microglial activation around intracerebral grafts can be modified pharmacologically. However, the results do not confirm direct neuroprotective effects of cell cycle inhibition after intracerebral transplantation. Reducing microglial recruitment around grafts could be beneficial by reducing inflammation-related degenerative processes. Sparing astrocytes in the same time provides transplanted cells with essential trophics and support. We consider microglial inhibition to be a possible approach for reducing later graft-related complications.


Subject(s)
Astrocytes/drug effects , Brain Tissue Transplantation/methods , Microglia/drug effects , Neuroprotective Agents/pharmacology , Roscovitine/pharmacology , Animals , Brain/drug effects , Brain/pathology , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Male , Parkinsonian Disorders , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley
2.
Balkan Med J ; 35(2): 141-147, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29039346

ABSTRACT

BACKGROUND: Transplantation of fetal mesencephalic tissue is a well-established concept for functional reinnervation of the dopamine-depleted rat striatum. However, there is no extensive description of the glial response of the host brain following this procedure. AIMS: The present study aimed to quantitatively and qualitatively analyse astrogliosis surrounding intrastriatal grafts and compare it to the reaction to mechanical injury with the transplantation instrument only. STUDY DESIGN: Animal experimentation. METHODS: The standard 6-hydroxydopamine-induced unilateral model of Parkinson's disease was used. The experimental animals received transplantation of a single-cell suspension of E14 ventral mesencephalic tissue. Control animals (sham-transplanted) were subjected to injury by the transplantation cannula, without injection of a cell suspension. Histological analyses were carried out 7 and 28 days following the procedure by immunohistochemistry assays for tyrosine hydroxylase and glial fibrillary acidic protein. To evaluate astrogliosis, the cell density and immunopositive area were measured in distinct zones within and surrounding the grafts or the cannula tract. RESULTS: Statistical analysis revealed that astrogliosis in the grafted striatum increased from day 7 to day 28, as shown by a significant change in both cell density and the immunopositive area. The cell density increased from 816.7±370.6 to 1403±272.1 cells/mm2 (p<0.0001) аnd from 523±245.9 to 1164±304.8 cells/mm2 (p<0.0001) in the two zones in the graft core, and from 1151±218.6 to 1485±210.6 cells/mm2 (p<0.05) for the zone in the striatum immediately adjacent to the graft. The glial fibrillary acidic protein-expressing area increased from 0.3109±0.1843 to 0.7949±0.1910 (p<0.0001) and from 0.1449±0.1240 to 0.702±0.2558 (p<0.0001) for the same zones in the graft core, and from 0.5277±0.1502 to 0.6969±0.1223 (p<0.0001) for the same area adjacent to the graft zone. However, astrogliosis caused by mechanical impact only (control) did not display such dynamics. This finding suggests an influence of the grafted cells on the host's glia, possibly through cross-talk between astrocytes and transplanted neurons. CONCLUSION: This bidirectional relationship is affected by multiple factors beyond the mechanical trauma. Elucidation of these factors might help achieve better functional outcomes after intracerebral transplantation.


Subject(s)
Astrocytes/transplantation , Brain Tissue Transplantation , Cell Transplantation , Disease Models, Animal , Fetal Tissue Transplantation , Parkinson Disease/therapy , Animals , Male , Rats , Rats, Sprague-Dawley , Rodentia
3.
Front Cell Neurosci ; 10: 245, 2016.
Article in English | MEDLINE | ID: mdl-27822179

ABSTRACT

Direct reprogramming from somatic to neural cell types has become an alternative to induced pluripotent stem cells. Most protocols employ viral expression systems, posing the risk of random genomic integration. Recent developments led to plasmid-based protocols, lowering this risk. However, these protocols either relied on continuous presence of a variety of small molecules or were only able to reprogram murine cells. We therefore established a reprogramming protocol based on vectors containing the Epstein-Barr virus (EBV)-derived oriP/EBNA1 as well as the defined expression factors Oct3/4, Sox2, Klf4, L-myc, Lin28, and a small hairpin directed against p53. We employed a defined neural medium in combination with the neurotrophins bFGF, EGF and FGF4 for cultivation without the addition of small molecules. After reprogramming, cells demonstrated a temporary increase in the expression of endogenous Oct3/4. We obtained induced neural stem cells (iNSC) 30 days after transfection. In contrast to previous results, plasmid vectors as well as a residual expression of reprogramming factors remained detectable in all cell lines. Cells showed a robust differentiation into neuronal (72%) and glial cells (9% astrocytes, 6% oligodendrocytes). Despite the temporary increase of pluripotency-associated Oct3/4 expression during reprogramming, we did not detect pluripotent stem cells or non-neural cells in culture (except occasional residual fibroblasts). Neurons showed electrical activity and functional glutamatergic synapses. Our results demonstrate that reprogramming adult human fibroblasts to iNSC by plasmid vectors and basic neural medium without small molecules is possible and feasible. However, a full set of pluripotency-associated transcription factors may indeed result in the acquisition of a transient (at least partial) pluripotent intermediate during reprogramming. In contrast to previous reports, the EBV-based plasmid system remained present and active inside the cells at all time points.

4.
Pediatr Neurol ; 62: 62-5, 2016 09.
Article in English | MEDLINE | ID: mdl-27426422

ABSTRACT

BACKGROUND: Langerhans cell histiocytosis is a rare disease of the monocyte-macrophage system. Abnormalities of the hypothalamic-pituitary region are common in individuals with central nervous system involvement. PATIENT DESCRIPTION: This six-year-old boy developed rapidly progressive aggressive behavior, central diabetes insipidus, and repeated complex partial seizures. Magnetic resonance imaging revealed a diffuse leukoencephalopathy-like pattern and numerous infratentorial and supratentorial granulomatous nodules in the brain parenchyma along with infundibular and hypothalamic mass lesions. Stereotactic serial biopsies enabled histopathologic and immunohistochemical diagnosis of Langerhans cell histiocytosis. CONCLUSIONS: Similar MRI findings have rarely been described in the literature. These findings represent part of the broad neuroradiological spectrum of Langerhans cell histiocytosis of the nervous system in children.


Subject(s)
Brain Diseases/diagnosis , Brain Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/pathology , Brain Diseases/drug therapy , Child , Diagnosis, Differential , Fatal Outcome , Histiocytosis, Langerhans-Cell/drug therapy , Humans , Male
5.
Clin Cancer Res ; 22(15): 3903-14, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27012813

ABSTRACT

PURPOSE: We used human stem and progenitor cells to develop a genetically accurate novel model of MYC-driven Group 3 medulloblastoma. We also developed a new informatics method, Disease-model Signature versus Compound-Variety Enriched Response ("DiSCoVER"), to identify novel therapeutics that target this specific disease subtype. EXPERIMENTAL DESIGN: Human neural stem and progenitor cells derived from the cerebellar anlage were transduced with oncogenic elements associated with aggressive medulloblastoma. An in silico analysis method for screening drug sensitivity databases (DiSCoVER) was used in multiple drug sensitivity datasets. We validated the top hits from this analysis in vitro and in vivo RESULTS: Human neural stem and progenitor cells transformed with c-MYC, dominant-negative p53, constitutively active AKT and hTERT formed tumors in mice that recapitulated Group 3 medulloblastoma in terms of pathology and expression profile. DiSCoVER analysis predicted that aggressive MYC-driven Group 3 medulloblastoma would be sensitive to cyclin-dependent kinase (CDK) inhibitors. The CDK 4/6 inhibitor palbociclib decreased proliferation, increased apoptosis, and significantly extended the survival of mice with orthotopic medulloblastoma xenografts. CONCLUSIONS: We present a new method to generate genetically accurate models of rare tumors, and a companion computational methodology to find therapeutic interventions that target them. We validated our human neural stem cell model of MYC-driven Group 3 medulloblastoma and showed that CDK 4/6 inhibitors are active against this subgroup. Our results suggest that palbociclib is a potential effective treatment for poor prognosis MYC-driven Group 3 medulloblastoma tumors in carefully selected patients. Clin Cancer Res; 22(15); 3903-14. ©2016 AACR.


Subject(s)
Cerebellar Neoplasms/genetics , Computational Biology/methods , Genetic Predisposition to Disease , Medulloblastoma/genetics , Models, Biological , Animals , Apoptosis/drug effects , Biomarkers , Cell Line, Tumor , Computer Simulation , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Disease Models, Animal , Drug Discovery , Gene Expression Profiling , Humans , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Medulloblastoma/pathology , Mice , Neural Stem Cells/metabolism , Phosphorylation , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/genetics , Pyridines/pharmacology , Transcriptome , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
6.
Neurorehabil Neural Repair ; 29(10): 1001-12, 2015.
Article in English | MEDLINE | ID: mdl-25857428

ABSTRACT

Subthalamic nucleus (STN) high-frequency stimulation (HFS) is a routine treatment in Parkinson's disease (PD), with confirmed long-term benefits. An alternative, but still experimental, treatment is cell replacement and restorative therapy based on transplanted dopaminergic neurons. The current experiment evaluated the potential synergy between neuromodulation and grafting by studying the effect of continuous STN-HFS on the survival, integration, and functional efficacy of ventral mesencephalic dopaminergic precursors transplanted into a unilateral 6-hydroxydopamine medial forebrain bundle lesioned rodent PD model. One group received continuous HFS of the ipsilateral STN starting a week prior to intrastriatal dopaminergic neuron transplantation, whereas the sham-stimulated group did not receive STN-HFS but only dopaminergic grafts. A control group was neither lesioned nor transplanted. Over the following 7 weeks, the animals were probed on a series of behavioral tasks to evaluate possible graft and/or stimulation-induced functional effects. Behavioral and histological data suggest that STN-HFS significantly increased graft cell survival, graft-host integration, and functional recovery. These findings might open an unexplored road toward combining neuromodulative and neuroregenerative strategies to treat severe neurologic conditions.


Subject(s)
Deep Brain Stimulation , Dopaminergic Neurons/physiology , Parkinson Disease/therapy , Recovery of Function/physiology , Stem Cell Transplantation/methods , Subthalamic Nucleus/physiology , Adrenergic Agents/toxicity , Animals , Disease Models, Animal , Dopaminergic Neurons/transplantation , Ectodysplasins/metabolism , Embryo, Mammalian , Exploratory Behavior/physiology , Male , Medial Forebrain Bundle/injuries , Nerve Tissue Proteins/metabolism , Oxidopamine/toxicity , Parkinson Disease/etiology , Psychomotor Performance/physiology , Rats , Rats, Sprague-Dawley , Recovery of Function/drug effects , Tyrosine 3-Monooxygenase/metabolism
7.
Clin Cancer Res ; 21(9): 2057-64, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25655102

ABSTRACT

PURPOSE: Rechallenge with temozolomide (TMZ) at first progression of glioblastoma after temozolomide chemoradiotherapy (TMZ/RT→TMZ) has been studied in retrospective and single-arm prospective studies, applying temozolomide continuously or using 7/14 or 21/28 days schedules. The DIRECTOR trial sought to show superiority of the 7/14 regimen. EXPERIMENTAL DESIGN: Patients with glioblastoma at first progression after TMZ/RT→TMZ and at least two maintenance temozolomide cycles were randomized to Arm A [one week on (120 mg/m(2) per day)/one week off] or Arm B [3 weeks on (80 mg/m(2) per day)/one week off]. The primary endpoint was median time-to-treatment failure (TTF) defined as progression, premature temozolomide discontinuation for toxicity, or death from any cause. O(6)-methylguanine DNA methyltransferase (MGMT) promoter methylation was prospectively assessed by methylation-specific PCR. RESULTS: Because of withdrawal of support, the trial was prematurely closed to accrual after 105 patients. There was a similar outcome in both arms for median TTF [A: 1.8 months; 95% confidence intervals (CI), 1.8-3.2 vs. B: 2.0 months; 95% CI, 1.8-3.5] and overall survival [A: 9.8 months (95% CI, 6.7-13.0) vs. B: 10.6 months (95% CI, 8.1-11.6)]. Median TTF in patients with MGMT-methylated tumors was 3.2 months (95% CI, 1.8-7.4) versus 1.8 months (95% CI, 1.8-2) in MGMT-unmethylated glioblastoma. Progression-free survival rates at 6 months (PFS-6) were 39.7% with versus 6.9% without MGMT promoter methylation. CONCLUSIONS: Temozolomide rechallenge is a treatment option for MGMT promoter-methylated recurrent glioblastoma. Alternative strategies need to be considered for patients with progressive glioblastoma without MGMT promoter methylation.


Subject(s)
Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/genetics , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dacarbazine/analogs & derivatives , Glioblastoma/genetics , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics , Adult , Biomarkers, Tumor/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/mortality , DNA Methylation/genetics , Dacarbazine/administration & dosage , Disease-Free Survival , Female , Glioblastoma/drug therapy , Glioblastoma/mortality , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Prognosis , Promoter Regions, Genetic/genetics , Proportional Hazards Models , Temozolomide , Young Adult
8.
Onco Targets Ther ; 8: 3803-15, 2015.
Article in English | MEDLINE | ID: mdl-26719708

ABSTRACT

BACKGROUND: Magnetic resonance imaging (MRI) is the standard neuroimaging method to diagnose neoplastic brain lesions, as well as to perform stereotactic biopsy surgical planning. MRI has the advantage of providing structural anatomical details with high sensitivity, though histological specificity is limited. Although combining MRI with other imaging modalities, such as positron-emission tomography (PET), has proven to increment specificity, exact correlation between PET threshold uptake ratios (URs) and histological diagnosis and grading has not yet been described. OBJECTIVES: The aim of this study was to correlate exactly the histopathological criteria of the biopsy site to its PET uptake value with high spatial resolution (mm(3)), and to analyze the diagnostic value of PET using the amino acid O-(2-[(18)F]fluoroethyl)-l-tyrosine ((18)F-FET) PET in patients with newly diagnosed brain lesions in comparison to histological findings obtained from stereotactic serial biopsy. PATIENTS AND METHODS: A total of 23 adult patients with newly diagnosed brain tumors on MRI were enrolled in this study. Subsequently to diagnoses, all patients underwent a (18)F-FET PET-guided stereotactic biopsy, using an original newly developed software module, which is presented here. Conventional MRI, stereotactic computed tomography series, and (18)F-FET PET images were semiautomatically fused, and hot-spot detection was performed for target planning. UR was determined using the uptake value from the biopsy sites in relation to the contralateral frontal white matter. UR values ≥1.6 were considered positive for glioma. High-grade glioma (HGG) was suspected with URs ≥3.0, while low-grade glioma (LGG) was suspected with URs between 1.6 and 3.0. Stereotactic serial biopsies along the trajectory at multiple sites were performed in millimeter steps, and the FET URs for each site were correlated exactly with a panel of 27 different histopathological markers. Comparisons between FET URs along the biopsy trajectories and the histological diagnoses were made with Pearson product-moment correlation coefficients. Analysis of variance was performed to test for significant differences in maximum UR between different tumor grades. RESULTS: A total of 363 biopsy specimens were taken from 23 patients by stereotactic serial biopsies. Histological examination revealed eight patients (35%) with an LGG: one with a World Health Organization (WHO)-I lesion and seven with a WHO-II lesion. Thirteen (57%) patients revealed an HGG (two with a WHO-III and three with a WHO-IV tumor), and two patients (9%) showed a process that was neither HGG nor LGG (group X or no-grade group). The correlation matrix between histological findings and the UR revealed five strong correlations. Low cell density in tissue samples was found to have a significant negative correlation with the measured cortical uptake rate (r=-0.43, P=0.02), as well as moderate cell density (r=-0.48, P=0.02). Pathological patterns of proliferation (r=0.37, P=0.04), GFAP (r=0.37, P=0.04), and Olig2 (r=0.36, P=0.05) showed a significant positive correlation with cortical URs. Analysis of variance tests showed a significant difference between the LGG and the HGG groups (F=8.27, P<0.002), but no significant differences when differentiating between the X group and the HGG (P=0.2)/LGG (P=0.8) groups, nor between the no-grade group and the WHO-I group. CONCLUSION: (18)F-FET PET is a valuable tool, as it allows the differentiation of HGGs from LGGs. Its use is not limited to preoperative evaluation; it may also refine biopsy targeting and improve tumor delimitation for radiotherapy. Histology is still necessary, and remains the gold standard for definitive diagnosis of brain lesions.

10.
Article in English | MEDLINE | ID: mdl-24949193

ABSTRACT

INTRODUCTION: Although there are many experimental studies describing the methodology of the middle cerebral artery occlusion (MCAO) in the literature, only limited data on these distinct anatomical structures and the details of the surgical procedure in a step by step manner. The aim of the present study simply is to examine the surgical anatomy of MCAO model and its modifications in the rat. MATERIALS AND METHODS: Forty Sprague-Dawley rats were used; 20 during the training phase and 20 for the main study. The monofilament sutures were prepared as described in the literature. All surgical steps of the study were performed under the operating microscope, including insertion of monofilament into middle cerebral artery through the internal carotid artery. RESULTS: After an extensive training period, we lost two rats in four weeks. The effects of MCAO were confirmed by the evidence of severe motor deficit during the recovery period, and histopathological findings of infarction were proved in all 18 surviving rats. CONCLUSION: In this study, a microsurgical guideline of the MCAO model in the rat is provided with the detailed description of all steps of the intraluminal monofilament insertion method with related figures.

11.
Neurobiol Dis ; 68: 112-25, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24780496

ABSTRACT

Following transplantation of foetal primary dopamine (DA)-rich tissue for neurorestaurative treatment of Parkinson's disease (PD), only 5-10% of the functionally relevant DAergic cells survive both in experimental models and in clinical studies. The current work tested how a two-step grafting protocol could have a positive impact on graft survival. DAergic tissue is divided in two portions and grafted in two separate sessions into the same target area within a defined time interval. We hypothesized that the first graft creates a "DAergic" microenvironment or "nest" similar to the perinatal substantia nigra that stimulates and protects the second graft. 6-OHDA-lesioned rats were sequentially transplanted with wild-type (GFP-, first graft) and transgenic (GFP+, second graft) DAergic cells in time interims of 2, 5 or 9days. Each group was further divided into two sub-groups receiving either 200k (low cell number groups: 2dL, 5dL, 9dL) or 400k cells (high cell number groups: 2dH, 5dH, 9dH) as first graft. During the second transplantation, all groups received the same amount of 200k GFP+ cells. Controls received either low or high cell numbers in one single session (standard protocol). Drug-induced rotations, at 2 and 6weeks after grafting, showed significant improvement compared to the baseline lesion levels without significant differences between the groups. Rats were sacrificed 8weeks after transplantation for post-mortem histological assessment. Both two-step groups with the time interval of 2days (2dL and 2dH) showed a significantly higher survival of DAergic cells compared to their respective standard control group (2dL, +137%; 2dH, +47%). Interposing longer intervals of 5 or 9days resulted in the loss of statistical significance, neutralising the beneficial two-step grafting effect. Furthermore, the transplants in the 2dL and 2dH groups had higher graft volume and DA-fibre-density values compared to all other two-step groups. They also showed intense growth of GFP+ vessels - completely absent in control grafts - in regions where the two grafts overlap, indicating second-graft derived angiogenesis. In summary, the study shows that two-step grafting with a 2days time interval significantly increases DAergic cell survival compared to the standard protocol. Furthermore, our results demonstrate, for the first time, a donor-derived neoangiogenesis, leading to a new understanding of graft survival and development in the field of cell-replacement therapies for neurodegenerative diseases.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/physiology , Dopaminergic Neurons/transplantation , Fetal Tissue Transplantation/methods , Parkinson Disease/surgery , Adrenergic Agents/toxicity , Animals , Apomorphine/pharmacology , Disease Models, Animal , Embryo, Mammalian , Female , Graft Survival/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Medial Forebrain Bundle/injuries , Nerve Fibers/pathology , Oxidopamine/toxicity , Parkinson Disease/etiology , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Rats, Transgenic , Time Factors
12.
Eur J Neurosci ; 39(9): 1474-84, 2014 May.
Article in English | MEDLINE | ID: mdl-24628951

ABSTRACT

Subthalamic nucleus (STN) modulation is currently the gold standard in the treatment of Parkinson's disease (PD) cases refractory to medication. Cell transplantation is a tissue-restorative approach and is a promising strategy in the treatment of PD. One of the obstacles to overcome in cell therapy is the poor dopaminergic cell survival. Our experiment investigates the impact of a partial subthalamotomy prior to ventral mesencephalic (VM) embryonic cell transplantation on dopaminergic cell survival and functional outcome. Unilateral dopamine depletion was carried out in rats, via medial forebrain bundle (MFB) injection of 6-hydroxydopamine, and half of the animals went on to receive unilateral excitotoxic lesions of the STN/Zone Incerta (ZI) causing partial lesion of these structures on the same side as the MFB lesion. All MFB-lesioned animals, with or without the STN/ZI lesion, received striatal ipsilateral embryonic VM cell grafts. The data suggest that the STN/ZI lesion could boost the dopamine cell survival in the grafts by 2.6-fold compared with the control grafted-only group. Moreover, performance on the drug-induced rotation and the spontaneous behavior tests were ameliorated on the STN/ZI-lesioned group to a significantly greater extent than the grafted-only group. These data suggest that the STN/ZI partial lesion optimized the striatal environment, promoting an improvement in cell survival. Further studies are needed to see whether the synergy between STN modulation via deep brain stimulation and cell therapy might have clinical applications in the management of PD.


Subject(s)
Corpus Striatum/surgery , Dopaminergic Neurons/transplantation , Parkinsonian Disorders/therapy , Recovery of Function , Subthalamic Nucleus/surgery , Animals , Cell Survival , Dopaminergic Neurons/physiology , Female , Motor Activity , Parkinsonian Disorders/surgery , Rats , Rats, Sprague-Dawley
13.
BMC Cancer ; 14: 115, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24555482

ABSTRACT

BACKGROUND: Adult brainstem gliomas are rare primary brain tumors (<2% of gliomas). The goal of this study was to analyze clinical, prognostic and therapeutic factors in a large series of histologically proven brainstem gliomas. METHODS: Between 1997 and 2007, 104 patients with a histologically proven brainstem glioma were retrospectively analyzed. Data about clinical course of disease, neuropathological findings and therapeutic approaches were analyzed. RESULTS: The median age at diagnosis was 41 years (range 18-89 years), median KPS before any operative procedure was 80 (range 20-100) and median survival for the whole cohort was 18.8 months. Histopathological examinations revealed 16 grade I, 31 grade II, 42 grade III and 14 grade IV gliomas. Grading was not possible in 1 patient. Therapeutic concepts differed according to the histopathology of the disease. Median overall survival for grade II tumors was 26.4 months, for grade III tumors 12.9 months and for grade IV tumors 9.8 months. On multivariate analysis the relative risk to die increased with a KPS ≤ 70 by factor 6.7, with grade III/IV gliomas by the factor 1.8 and for age ≥ 40 by the factor 1.7. External beam radiation reduced the risk to die by factor 0.4. CONCLUSION: Adult brainstem gliomas present with a wide variety of neurological symptoms and postoperative radiation remains the cornerstone of therapy with no proven benefit of adding chemotherapy. Low KPS, age ≥ 40 and higher tumor grade have a negative impact on overall survival.


Subject(s)
Brain Stem Neoplasms/pathology , Glioma/pathology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Biopsy , Brain Stem Neoplasms/diagnosis , Brain Stem Neoplasms/mortality , Brain Stem Neoplasms/therapy , Combined Modality Therapy , Female , Glioma/diagnosis , Glioma/mortality , Glioma/therapy , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Grading , Neuroimaging , Prognosis , Retrospective Studies , Treatment Outcome , Young Adult
14.
Sci Rep ; 4: 3849, 2014 Jan 24.
Article in English | MEDLINE | ID: mdl-24458018

ABSTRACT

The impact of pressure waves on cells may provide several possible applications in biology and medicine including the direct killing of tumors, drug delivery or gene transfection. In this study we characterize the physical properties of mechanical pressure waves generated by a nanosecond laser pulse in a setup with well-defined cell culture conditions. To systematically characterize the system on the relevant length and time scales (micrometers and nanoseconds) we use photon Doppler velocimetry (PDV) and obtain velocity profiles of the cell culture vessel at the passage of the pressure wave. These profiles serve as input for numerical pressure wave simulations that help to further quantify the pressure conditions on the cellular length scale. On the biological level we demonstrate killing of glioblastoma cells and quantify experimentally the pressure threshold for cell destruction.


Subject(s)
Brain Neoplasms/pathology , Glioblastoma/pathology , Lasers , Pressure , Computer Simulation , Humans , Laser-Doppler Flowmetry , Photons , Tumor Cells, Cultured
15.
J Neurooncol ; 117(1): 141-5, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24442484

ABSTRACT

The integrin antagonist cilengitide has been explored as an adjunct with anti-angiogenic properties to standard of care temozolomide chemoradiotherapy (TMZ/RT → TMZ) in newly diagnosed glioblastoma. Preclinical data as well as anecdotal clinical observations indicate that anti-angiogenic treatment may result in altered patterns of tumor progression. Using a standardized approach, we analyzed patterns of progression on MRI in 21 patients enrolled onto a phase 2 trial of cilengitide added to TMZ/RT → TMZ in newly diagnosed glioblastoma. Thirty patients from the experimental treatment arm of the EORTC/NCIC pivotal TMZ trial served as a reference. MRIcro software was used to map location and extent of initial preoperative and recurrent tumors on MRI of both groups into the same stereotaxic space which were then analyzed using an automated tool of image analysis. Clinical and outcome data of the cilengitide-treated patients were similar to those of the EORTC/NCIC trial except for a higher proportion of patients with a methylated O(6)-methylguanyl-DNA-methyltransferase gene promoter. Analysis of recurrence pattern revealed neither a difference in the size of the recurrent tumor nor in the distance of the recurrences from the preoperative tumor location between groups. Overall frequencies of distant recurrences were 20 % in the reference group and 19 % (4/21 patients) in the cilengitide group. Compared with TMZ/RT → TMZ alone, the addition of cilengitide does not alter patterns of progression. This analysis does not support concerns that integrin antagonism by cilengitide may induce a more aggressive phenotype at progression, but also provides no evidence for an anti-invasive activity of cilengitide in patients with newly diagnosed glioblastoma.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Snake Venoms/administration & dosage , Adult , Aged , Antineoplastic Agents, Alkylating/administration & dosage , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Chemoradiotherapy , Chemotherapy, Adjuvant , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Disease Progression , Female , Glioblastoma/pathology , Glioblastoma/therapy , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Temozolomide , Treatment Outcome
16.
Cell Transplant ; 23(8): 995-1007, 2014.
Article in English | MEDLINE | ID: mdl-23635602

ABSTRACT

Restorative cell therapy concepts in neurodegenerative diseases are aimed at replacing lost neurons. Despite advances in research on pluripotent stem cells, fetal tissue from routine elective abortions is still regarded as the only safe cell source. Progenitor cells isolated from distinct first-trimester fetal CNS regions have already been used in clinical trials and will be used again in a new multicenter trial funded by the European Union (TRANSEURO). Bacterial contamination of human fetal tissue poses a potential risk of causing infections in the brain of the recipient. Thus, effective methods of microbial decontamination and validation of these methods are required prior to approval of a neurorestorative cell therapy trial. We have developed a protocol consisting of subsequent washing steps at different stages of tissue processing. Efficacy of microbial decontamination was assessed on rat embryonic tissue incubated with high concentrations of defined microbe solutions including representative bacterial and fungal species. Experimental microbial contamination was reduced by several log ranks. Subsequently, we have analyzed the spectrum of microbial contamination and the effect of subsequent washing steps on aborted human fetal tissue; 47.7% of the samples taken during human fetal tissue processing were positive for a microbial contamination, but after washing, no sample exhibited bacterial growth. Our data suggest that human fetal tissue for neural repair can carry microbes of various species, highlighting the need for decontamination procedures. The decontamination protocol described in this report has been shown to be effective as no microbes could be detected at the end of the procedure.


Subject(s)
Brain Tissue Transplantation/methods , Brain/embryology , Brain/microbiology , Decontamination/methods , Fetal Tissue Transplantation/methods , Neurodegenerative Diseases/therapy , Animals , Humans , Rats , Treatment Outcome
17.
Restor Neurol Neurosci ; 32(2): 259-68, 2014.
Article in English | MEDLINE | ID: mdl-24164802

ABSTRACT

PURPOSE: Intrastriatal neural transplantation using multiple grafts is an experimental approach to the treatment of Huntington's disease (HD). Brain atrophy makes stereotactic plans in these patients a tedious procedure with a risk of suboptimal spatial distribution of the grafts in transplantation procedures. Here we present a self-developed software to optimize the surgical stereotactic planning for bilateral neurotransplantation procedures. It allows close to symmetrical distribution of the stereotactic coordinates in relation to the mid-commissural point (MCP), proposing automatically the planning coordinates for the first transplanted hemisphere and mirrored coordinates to be used in the contra-lateral hemisphere. METHODS: Twenty-two consecutive HD patients underwent bilateral stereotactic striatal transplantation. Two caudate nucleus and four putaminal tracks were planned bilaterally. For the second, contra-lateral transplantation, the coordinates were mirrored in order to determine contralateral targets and trajectories. Intra-individual comparison between software given coordinates and finally used coordinates was performed. RESULTS: No statistical significance was found comparing a) the differences between coordinates proposed by the software and the final coordinates and b) the distribution of the transplantation sites in relation to the midline for the right vs. left hemisphere. No intra- or postoperative transplantation-related adverse events occurred. CONCLUSIONS: The use of model-based and mirrored coordinates allowed optimal spatial distribution of the grafts. Minor changes were required comparing right to left coordinates giving proof-of principle. The initial use of the software suggests that it may be useful in experimental transplantation trials where neural cell grafts are to be implanted into predefined target sites in the human brain, whether unilateral or bilateral.


Subject(s)
Brain/surgery , Fetal Tissue Transplantation , Huntington Disease/surgery , Software , Adult , Aged , Brain Mapping/methods , Female , Fetal Tissue Transplantation/methods , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Neurosurgical Procedures , Treatment Outcome
18.
J Synchrotron Radiat ; 21(Pt 1): 242-50, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24365943

ABSTRACT

Gold nanoparticles are excellent intracellular markers in X-ray imaging. Having shown previously the suitability of gold nanoparticles to detect small groups of cells with the synchrotron-based computed tomography (CT) technique both ex vivo and in vivo, it is now demonstrated that even single-cell resolution can be obtained in the brain at least ex vivo. Working in a small animal model of malignant brain tumour, the image quality obtained with different imaging modalities was compared. To generate the brain tumour, 1 × 10(5) C6 glioma cells were loaded with gold nanoparticles and implanted in the right cerebral hemisphere of an adult rat. Raw data were acquired with absorption X-ray CT followed by a local tomography technique based on synchrotron X-ray absorption yielding single-cell resolution. The reconstructed synchrotron X-ray images were compared with images obtained by small animal magnetic resonance imaging. The presence of gold nanoparticles in the tumour tissue was verified in histological sections.


Subject(s)
Brain/cytology , Gold/chemistry , Metal Nanoparticles , Single-Cell Analysis , Synchrotrons , Tomography, X-Ray Computed/methods , Animals , Brain Neoplasms/pathology , Glioma/pathology , Magnetic Resonance Imaging , Rats , Rats, Wistar
19.
Front Cell Neurosci ; 7: 155, 2013.
Article in English | MEDLINE | ID: mdl-24065885

ABSTRACT

The molecular mechanisms underlying the differentiation of neural progenitor cells (NPCs) remain poorly understood. In this study we investigated the role of Ca(2+) and cAMP (cyclic adenosine monophosphate) in the differentiation of NPCs extracted from the subventricular zone of E14.5 rat embryos. Patch clamp recordings revealed that increasing cAMP-signaling with Forskolin or IBMX (3-isobutyl-1-methylxantine) significantly facilitated neuronal functional maturation. A continuous application of IBMX to the differentiation medium substantially increased the functional expression of voltage-gated Na(+) and K(+) channels, as well as neuronal firing frequency. Furthermore, we observed an increase in the frequency of spontaneous synaptic currents and in the amplitude of evoked glutamatergic and GABAergic synaptic currents. The most prominent acute effect of applying IBMX was an increase in L-type Ca(2+)currents. Conversely, blocking L-type channels strongly inhibited dendritic outgrowth and synapse formation even in the presence of IBMX, indicating that voltage-gated Ca(2+) influx plays a major role in neuronal differentiation. Finally, we found that nifedipine completely blocks IBMX-induced CREB phosphorylation (cAMP-response-element-binding protein), indicating that the activity of this important transcription factor equally depends on both enhanced cAMP and voltage-gated Ca(2+)-signaling. Taken together, these data indicate that the up-regulation of voltage-gated L-type Ca(2+)-channels and early electrical excitability are critical steps in the cAMP-dependent differentiation of SVZ-derived NPCs into functional neurons. To our knowledge, this is the first demonstration of the acute effects of cAMP on voltage-gated Ca(+2)channels in NPC-derived developing neurons.

20.
Behav Brain Res ; 256: 56-63, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23916743

ABSTRACT

Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.


Subject(s)
Brain Tissue Transplantation/methods , Fetal Tissue Transplantation/methods , Huntington Disease/physiopathology , Huntington Disease/therapy , Recovery of Function/physiology , Age Factors , Animals , Apomorphine/pharmacology , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Disease Models, Animal , Dopamine Agonists/pharmacology , Female , Globus Pallidus/pathology , Globus Pallidus/physiopathology , Huntington Disease/pathology , Motor Activity/drug effects , Motor Activity/physiology , Neurons/pathology , Neurons/physiology , Quinolinic Acid , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...