Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
iScience ; 26(1): 105802, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36636354

ABSTRACT

Non-alcoholic fatty liver disease is a heterogeneous disease with unclear underlying molecular mechanisms. Here, we perform single-cell RNA sequencing of hepatocytes and hepatic non-parenchymal cells to map the lipid signatures in mice with non-alcoholic fatty liver disease (NAFLD). We uncover previously unidentified clusters of hepatocytes characterized by either high or low srebp1 expression. Surprisingly, the canonical lipid synthesis driver Srebp1 is not predictive of hepatic lipid accumulation, suggestive of other drivers of lipid metabolism. By combining transcriptional data at single-cell resolution with computational network analyses, we find that NAFLD is associated with high constitutive androstane receptor (CAR) expression. Mechanistically, CAR interacts with four functional modules: cholesterol homeostasis, bile acid metabolism, fatty acid metabolism, and estrogen response. Nuclear expression of CAR positively correlates with steatohepatitis in human livers. These findings demonstrate significant cellular differences in lipid signatures and identify functional networks linked to hepatic steatosis in mice and humans.

2.
Nat Commun ; 14(1): 392, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693842

ABSTRACT

Cancer immunotherapy that deploys the host's immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically "cold" into "hot". In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes "frostbite" of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.


Subject(s)
Antineoplastic Agents , Cryotherapy , Immunotherapy , Neoplasms , Tumor Microenvironment , Animals , Female , Mice , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Immunotherapy/methods , Nanotechnology/methods , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cryotherapy/methods
3.
Int J Biol Sci ; 19(2): 625-640, 2023.
Article in English | MEDLINE | ID: mdl-36632458

ABSTRACT

Accumulating evidence shows that exosomes participate in cancer progression. However, the functions of cancer cell exosome-transmitted proteins are rarely studied. Previously, we reported that serglycin (SRGN) overexpression promotes invasion and metastasis of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the paracrine effects of exosomes from SRGN-overexpressing ESCC cells (SRGN Exo) on ESCC cell invasion and tumor angiogenesis, and used mass spectrometry to identify exosomal proteins involved. Cation-dependent mannose-6-phosphate receptor (M6PR) and ephrin type-B receptor 4 (EphB4) were pronouncedly upregulated in SRGN Exo. Upregulated exosomal M6PR mediated the pro-angiogenic effects of SRGN Exo both in vitro and in vivo, while augmented exosomal EphB4 mediated the pro-invasive effect of SRGN Exo on ESCC cells in vitro. In addition, in vitro studies showed that manipulation of M6PR expression affected the viability and migration of ESCC cells. Both M6PR and EphB4 expression levels were positively correlated with that of SRGN in the serum of patients with ESCC. High level of serum M6PR was associated with poor overall survival rates. Taken together, this study presents the first proof that exosomal M6PR and EphB4 play essential roles in tumor angiogenesis and malignancy, and that serum M6PR is a novel prognostic marker for ESCC patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Exosomes , Humans , Cell Line, Tumor , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Exosomes/genetics , Exosomes/metabolism , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/metabolism , Proteoglycans/genetics , Proteoglycans/metabolism
4.
Front Genet ; 13: 991842, 2022.
Article in English | MEDLINE | ID: mdl-36246638

ABSTRACT

Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.

5.
Respir Care ; 67(11): 1396-1404, 2022 11.
Article in English | MEDLINE | ID: mdl-35944965

ABSTRACT

BACKGROUND: Standardized acute asthma management with score-based, respiratory therapist (RT)-driven pathways and protocols improves outcomes including decreased length of stay (LOS) and time on continuous albuterol therapy. Limited data are available for the safety of continuous albuterol used outside of pediatric ICU (PICU). We use a modified pediatric asthma score (PAS) for the asthma pathway at our institution. The safety and effectiveness of using PAS to initiate/stop continuous albuterol as part of a score-based, RT-driven asthma pathway were evaluated. METHODS: A retrospective review of children ≥ 2 y admitted for asthma exacerbation to the PICU and step-down unit who received continuous albuterol as part of the asthma pathway during 2017-2019 was completed. Demographic and clinical data were extracted including PAS, dose and duration of continuous albuterol, LOS, and complications. Outcomes of subjects admitted to the PICU and step-down unit were compared. RESULTS: Results are expressed as median (interquartile range). The study included 412 children (61% male, 59.9% Black, 92.7% non-Hispanic, 44.9% moderate persistent asthma) with age and weight of 6.4 (4.0-10.0) y and 24.8 (17.3-39.5) kg, respectively. Most children were admitted to step-down unit (71.1%). Initial albuterol dose, duration, and LOS were 15 (10-20) mg/h, 9.1 (5.7-16.0) h, and 1.4 (0.9-2.3) d, respectively. Respiratory support was required by 29% of subjects. Need to restart therapy (2.9%), transfer to PICU (1.7%), and intubation (0.5%) were infrequent. No pneumothoraces or deaths were reported. Emergency department visits (3.9%) or readmissions (0.7%) within 30 d of discharge were low. Subjects admitted to the PICU were sicker and required more therapies and respiratory support than those admitted to the step-down unit. CONCLUSIONS: Use of an RT-driven, score-based pathway for initiation and discontinuation of continuous albuterol for treatment of pediatric asthma exacerbation was safe and effective in the PICU and step-down unit.


Subject(s)
Asthma , Status Asthmaticus , Humans , Child , Male , Female , Albuterol , Bronchodilator Agents , Status Asthmaticus/drug therapy , Asthma/drug therapy , Length of Stay
6.
Oncogene ; 41(36): 4185-4199, 2022 09.
Article in English | MEDLINE | ID: mdl-35882980

ABSTRACT

HFE (Hemochromatosis) is a conventional iron level regulator and its loss of function due to gene mutations increases the risk of cancers including hepatocellular carcinoma (HCC). Likewise, studies focusing on HFE overexpression in cancers are all limited to linking up these events as a consequence of iron level deregulation. No study has explored any iron unrelated role of HFE in cancers. Here, we first reported HFE as an oncogene in HCC and its undescribed function on promoting abscission in cytokinesis during mitotic cell division, independent of its iron-regulating ability. Clinical analyses revealed HFE upregulation in tumors linking to large tumor size and poor prognosis. Functionally and mechanistically, HFE promoted cytokinetic abscission via facilitating ESCRT abscission machinery recruitment to the abscission site through signaling a novel HFE/ALK3/Smads/LIF/Hippo/YAP/YY1/KIF13A axis. Pharmacological blockage of HFE signaling axis impeded tumor phenotypes in vitro and in vivo. Our data on HFE-driven HCC unveiled a new mechanism utilized by cancer cells to propel rapid cell division. This study also laid the groundwork for tumor intolerable therapeutics development given the high cytokinetic dependency of cancer cells and their vulnerability to cytokinetic blockage.


Subject(s)
Carcinoma, Hepatocellular , Hemochromatosis , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Cell Division , Cytokinesis/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Hemochromatosis Protein/genetics , Humans , Iron , Kinesins , Liver Neoplasms/genetics
7.
New Phytol ; 234(4): 1220-1236, 2022 05.
Article in English | MEDLINE | ID: mdl-35263440

ABSTRACT

While trees can acclimate to warming, there is concern that tropical rainforest species may be less able to acclimate because they have adapted to a relatively stable thermal environment. Here we tested whether the physiological adjustments to warming differed among Australian tropical, subtropical and warm-temperate rainforest trees. Photosynthesis and respiration temperature responses were quantified in six Australian rainforest seedlings of tropical, subtropical and warm-temperate climates grown across four growth temperatures in a glasshouse. Temperature-response models were fitted to identify mechanisms underpinning the response to warming. Tropical and subtropical species had higher temperature optima for photosynthesis (ToptA ) than temperate species. There was acclimation of ToptA to warmer growth temperatures. The rate of acclimation (0.35-0.78°C °C-1 ) was higher in tropical and subtropical than in warm-temperate trees and attributed to differences in underlying biochemical parameters, particularly increased temperature optima of Vcmax25 and Jmax25 . The temperature sensitivity of respiration (Q10 ) was 24% lower in tropical and subtropical compared with warm-temperate species. Overall, tropical and subtropical species had a similar capacity to acclimate to changes in growth temperature as warm-temperate species, despite being grown at higher temperatures. Quantifying the physiological acclimation in rainforests can improve accuracy of future climate predictions and assess their potential vulnerability to warming.


Subject(s)
Rainforest , Trees , Acclimatization/physiology , Australia , Carbon Dioxide , Photosynthesis/physiology , Plant Leaves/physiology , Temperature , Tropical Climate
8.
Chem Commun (Camb) ; 57(85): 11256-11259, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34633395

ABSTRACT

We report herein new luminescent rhenium(I) perfluorobiphenyl complexes that reacted specifically with the cysteine residue of the π-clamp sequence (FCPF) to afford novel peptide-based imaging reagents, photosensitisers for singlet oxygen and enzyme sensors.


Subject(s)
Coordination Complexes/chemistry , Luminescent Agents/chemistry , Peptides/chemistry , Rhenium/chemistry , Amino Acid Sequence , Apoptosis , Binding Sites , Biosensing Techniques , Cysteine/chemistry , Humans , Ligands , Molecular Conformation , Optical Imaging , Photochemotherapy , Protein Binding , Singlet Oxygen/chemistry , Structure-Activity Relationship
9.
JAMA Otolaryngol Head Neck Surg ; 147(10): 893-900, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34410314

ABSTRACT

Importance: Oral squamous cell carcinoma (SCC) is a lethal malignant neoplasm with a high rate of tumor metastasis and recurrence. Accurate diagnosis, prognosis prediction, and metastasis detection can improve patient outcomes. Deep learning for clinical image analysis can be used for diagnosis and prognosis in cancers, including oral SCC; its use in these areas can improve patient care and outcome. Observations: This review is a summary of the use of deep learning models for diagnosis, prognosis, and metastasis detection for oral SCC by analyzing information from pathological and radiographic images. Specifically, deep learning has been used to classify different cell types, to differentiate cancer cells from nonmalignant cells, and to identify oral SCC from other cancer types. It can also be used to predict survival, to differentiate between tumor grades, and to detect lymph node metastasis. In general, the performance of these deep learning models has an accuracy ranging from 77.89% to 97.51% and 76% to 94.2% with the use of pathological and radiographic images, respectively. The review also discusses the importance of using good-quality clinical images in sufficient quantity on model performance. Conclusions and Relevance: Applying pathological and radiographic images in deep learning models for diagnosis and prognosis of oral SCC has been explored, and most studies report results showing good classification accuracy. The successful use of deep learning in these areas has a high clinical translatability in the improvement of patient care.


Subject(s)
Carcinoma, Squamous Cell/diagnostic imaging , Carcinoma, Squamous Cell/pathology , Deep Learning , Image Interpretation, Computer-Assisted , Mouth Neoplasms/diagnostic imaging , Mouth Neoplasms/pathology , Humans , Lymphatic Metastasis , Neoplasm Metastasis , Neoplasm Recurrence, Local , Neoplasm Staging , Prognosis
10.
Carcinogenesis ; 42(7): 995-1007, 2021 07 16.
Article in English | MEDLINE | ID: mdl-34089582

ABSTRACT

MicroRNAs, as a group of post-transcriptional regulators, regulate multiple pathological processes including metastasis during tumor development. Here, we demonstrated the metastasis-suppressive function of microRNA (miR)-338-5p in esophageal squamous cell carcinoma (ESCC). Overexpression of miR-338-5p had inhibitory effect on invasive ability of ESCC cells and extracellular matrix degradation, whereas silencing miR-338-5p had opposite effects. Mechanistically, miR-338-5p directly targeted the 3' untranslated regions of hepatocellular growth factor receptor cMet (cMET) and epidermal growth factor receptor (EGFR). As a result, miR-338-5p inhibited the downstream signaling cascades of cMET and EGFR and repressed cMET- and EGFR-mediated ESCC cell invasion. Re-expression of cMET or EGFR in miR-338-5p overexpressing ESCC cells was sufficient to derepress ESCC cell invasion both in vitro and in vivo. We further showed that such manipulation downregulated the expression and secretion of matrix metalloproteinases 2 and 9, which resulted in impaired extracellular matrix degradation and cell invasion. Most importantly, systemic delivery of miR-338-5p mimic significantly inhibited metastasis of ESCC cells in nude mice. Taken together, our results uncovered a previously unknown mechanism through which miR-338-5p suppresses ESCC invasion and metastasis by regulating cMET/EGFR-matrix metalloproteinase 2/9 axis and highlighted the potential significance of miR-338-5p-based therapy in treating patients with metastatic ESCC.


Subject(s)
Esophageal Neoplasms/prevention & control , Esophageal Squamous Cell Carcinoma/prevention & control , Gene Expression Regulation, Neoplastic , Lung Neoplasms/prevention & control , MicroRNAs/genetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Animals , Apoptosis , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice , Mice, Nude , MicroRNAs/administration & dosage , Neoplasm Invasiveness , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
12.
Cardiol Young ; 31(5): 829-830, 2021 May.
Article in English | MEDLINE | ID: mdl-33682649

ABSTRACT

A young adult with late diagnosis of scimitar syndrome underwent infradiaphragmatic baffling of the scimitar vein to left atrium through an intra-atrial tunnel using PhotoFix® bovine pericardium with recurrent extensive fibrovascular granulation of the patch causing pulmonary and systemic venous obstruction leading to eventual explantation of the bovine pericardium.


Subject(s)
Pulmonary Veins , Scimitar Syndrome , Animals , Cattle , Humans , Pericardium/surgery , Pulmonary Circulation , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery , Scimitar Syndrome/diagnostic imaging , Scimitar Syndrome/surgery , Treatment Outcome , Young Adult
13.
Theranostics ; 11(6): 2722-2741, 2021.
Article in English | MEDLINE | ID: mdl-33456569

ABSTRACT

Rationale: Little is known about the roles of proteoglycans in esophageal cancer. This study aims to investigate the roles and mechanisms of serglycin (SRGN) proteoglycan in promoting metastasis of esophageal squamous cell carcinoma (ESCC). Methods: Reverse phase protein array analysis was used to identify activated signaling pathways in SRGN-overexpressing cells. Chemokine array was used to identify differentially secreted factors from SRGN-overexpressing cells. Binding between SRGN and potential interacting partners was evaluated using proximity ligation assay and co-immunoprecipitation. The glycosaminoglycan (GAG) chains of SRGN were characterized using fluorophore-assisted carbohydrate electrophoresis. Tissue microarray and serum samples were used to determine the correlation of SRGN expression with clinicopathological parameters and patient survival. Results: In vitro and in vivo experiments showed that SRGN promoted invasion and metastasis in ESCC via activating ERK pathway, stabilizing c-Myc and upregulating the secretion of matrix metalloproteinases. SRGN-knockdown suppressed tumorigenic hallmarks. These SRGN-elicited functions were carried out in an autocrine manner by inducing the secretion of midkine (MDK), which was further identified as a novel binding partner of SRGN for the formation of a SRGN/MDK/CD44 complex. In addition, SRGN interacted with MDK and matrix metalloproteinase 2 in ESCC via its GAG chains, which were mainly decorated with chondroitin sulfate comprising of ∆di-4S and ∆di-6S CS. Clinically, high expression of serum SRGN in serum of patients with ESCC was an independent prognostic marker for poor survival. Conclusions: This study provides the first evidence that elevated serum SRGN has prognostic significance in patients with ESCC, and sheds light on the molecular mechanism by which elevated circulating SRGN in cancer patients might promote cancer progression.


Subject(s)
Autocrine Communication/physiology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Proteoglycans/metabolism , Vesicular Transport Proteins/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Movement/physiology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , Hyaluronan Receptors/metabolism , Male , Matrix Metalloproteinase 2/metabolism , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Midkine/metabolism , Prognosis , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/physiology , Up-Regulation/physiology
14.
Front Immunol ; 11: 1935, 2020.
Article in English | MEDLINE | ID: mdl-32983121

ABSTRACT

Studies have shown that vaccine vectors and route of immunization can differentially activate different arms of the immune system. However, the effects of different HIV vaccine immunogens on mucosal inflammation have not yet been studied. Because mucosal sites are the primary route of HIV infection, we evaluated the cervico-vaginal inflammatory cytokine and chemokine levels of Mauritian cynomolgus macaques following immunization and boost using two different SIV vaccine immunogens. The PCS vaccine delivers 12 20-amino acid peptides overlapping the 12 protease cleavage sites, and the Gag/Env vaccine delivers the full Gag and full Env proteins of simian immunodeficiency virus. We showed that the PCS vaccine prime and boosts induced short-lived, lower level increases of a few pro-inflammatory/chemotactic cytokines. In the PCS-vaccine group only the levels of MCP-1 were significantly increased above the baseline (P = 0.0078, Week 6; P = 0.0078, Week 17; P = 0.0234; Week 51) following multiple boosts. In contrast, immunizations with the Gag/Env vaccine persistently increased the levels of multiple cytokines/chemokines. In the Gag/Env group, higher than baseline levels were consistently observed for IL-8 (P = 0.0078, Week 16; P = 0.0078, Week 17; P = 0.0156, Week 52), IL-1ß (P = 0.0234, Week 16; P = 0.0156, Week 17; P = 0.0156, Week 52), and MIP-1α (P = 0.0313, Week 16; P = 0.0156, Week 17; P = 0.0313, Week 52). Over time, repeated boosts altered the relative levels of these cytokines between the Gag/Env and PCS vaccine group. 18 weeks after final boost with a higher dosage, IP-10 levels (P = 0.0313) in the Gag/Env group remained higher than baseline. Thus, the influence of vaccine immunogens on mucosal inflammation needs to be considered when developing and evaluating candidate HIV vaccines.


Subject(s)
Cervix Uteri/drug effects , Cytokines/metabolism , Gene Products, env/administration & dosage , Gene Products, gag/administration & dosage , Inflammation Mediators/metabolism , SAIDS Vaccines/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Vagina/drug effects , Animals , Cervix Uteri/immunology , Cervix Uteri/metabolism , Female , Gene Products, env/genetics , Gene Products, env/immunology , Gene Products, env/toxicity , Gene Products, gag/genetics , Gene Products, gag/immunology , Gene Products, gag/toxicity , Macaca fascicularis , Mucous Membrane/drug effects , Mucous Membrane/immunology , Mucous Membrane/metabolism , SAIDS Vaccines/genetics , SAIDS Vaccines/immunology , SAIDS Vaccines/toxicity , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Time Factors , Vaccination , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/toxicity , Vagina/immunology , Vagina/metabolism
15.
J Oral Pathol Med ; 49(10): 977-985, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32740951

ABSTRACT

BACKGROUND: The natural history of oral squamous cell carcinoma (OSCC) is complicated by progressive disease including loco-regional tumour recurrence and development of distant metastases. Accurate prediction of tumour behaviour is crucial in delivering individualized treatment plans and developing optimal patient follow-up and surveillance strategies. Machine learning algorithms may be employed in oncology research to improve clinical outcome prediction. METHODS: Retrospective review of 467 OSCC patients treated over a 19-year period facilitated construction of a detailed clinicopathological database. 34 prognostic features from the database were used to populate 4 machine learning algorithms, linear regression (LR), decision tree (DT), support vector machine (SVM) and k-nearest neighbours (KNN) models, to attempt progressive disease outcome prediction. Principal component analysis (PCA) and bivariate analysis were used to reduce data dimensionality and highlight correlated variables. Models were validated for accuracy, sensitivity and specificity, with predictive ability assessed by receiver operating characteristic (ROC) and area under the curve (AUC) calculation. RESULTS: Out of 408 fully characterized OSCC patients, 151 (37%) had died and 131 (32%) exhibited progressive disease at the time of data retrieval. The DT model with 34 prognostic features was most successful in identifying "true positive" progressive disease, achieving 70.59% accuracy (AUC 0.67), 41.98% sensitivity and a high specificity of 84.12%. CONCLUSION: Machine learning models assist clinicians in accessing digitized health information and appear promising in predicting progressive disease outcomes. The future will see increasing emphasis on the use of artificial intelligence to enhance understanding of aggressive tumour behaviour, recurrence and disease progression.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Artificial Intelligence , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/therapy , Humans , Machine Learning , Mouth Neoplasms/diagnosis , Mouth Neoplasms/therapy , Neoplasm Recurrence, Local/diagnosis , Prognosis , ROC Curve , Retrospective Studies , Treatment Outcome
16.
Radiographics ; 40(4): 913-936, 2020.
Article in English | MEDLINE | ID: mdl-32469631

ABSTRACT

Professionals who specialize in breast imaging may be the first to initiate the conversation about genetic counseling with patients who have a diagnosis of premenopausal breast cancer or a strong family history of breast and ovarian cancer. Commercial genetic testing panels have gained popularity and have become more affordable in recent years. Therefore, it is imperative for radiologists to be able to provide counseling and to identify those patients who should be referred for genetic testing. The authors review the process of genetic counseling and the associated screening recommendations for patients at high and moderate risk. Ultimately, genetic test results enable appropriate patient-specific screening, which allows improvement of overall survival by early detection and timely treatment. The authors discuss pretest counseling, which involves the use of various breast cancer risk assessment tools such as the Gail and Tyrer-Cuzick models. The most common high- and moderate-risk gene mutations associated with breast cancer are also reviewed. In addition to BRCA1 and BRCA2, several high-risk genes, including TP53, PTEN, CDH1, and STK11, are discussed. Moderate-risk genes include ATM, CHEK2, and PALB2. The imaging appearances of breast cancer typically associated with each gene mutation, as well as the other associated cancers, are described. ©RSNA, 2020 See discussion on this article by Butler (pp 937-940).


Subject(s)
Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Diagnostic Imaging , Genetic Testing/methods , Referral and Consultation , Early Detection of Cancer , Female , Humans , Mutation , Ovarian Neoplasms/genetics , Risk Assessment
17.
Light Sci Appl ; 9: 25, 2020.
Article in English | MEDLINE | ID: mdl-32133128

ABSTRACT

Coherent Raman scattering (CRS) microscopy is widely recognized as a powerful tool for tackling biomedical problems based on its chemically specific label-free contrast, high spatial and spectral resolution, and high sensitivity. However, the clinical translation of CRS imaging technologies has long been hindered by traditional solid-state lasers with environmentally sensitive operations and large footprints. Ultrafast fibre lasers can potentially overcome these shortcomings but have not yet been fully exploited for CRS imaging, as previous implementations have suffered from high intensity noise, a narrow tuning range and low power, resulting in low image qualities and slow imaging speeds. Here, we present a novel high-power self-synchronized two-colour pulsed fibre laser that achieves excellent performance in terms of intensity stability (improved by 50 dB), timing jitter (24.3 fs), average power fluctuation (<0.5%), modulation depth (>20 dB) and pulse width variation (<1.8%) over an extended wavenumber range (2700-3550 cm-1). The versatility of the laser source enables, for the first time, high-contrast, fast CRS imaging without complicated noise reduction via balanced detection schemes. These capabilities are demonstrated in this work by imaging a wide range of species such as living human cells and mouse arterial tissues and performing multimodal nonlinear imaging of mouse tail, kidney and brain tissue sections by utilizing second-harmonic generation and two-photon excited fluorescence, which provides multiple optical contrast mechanisms simultaneously and maximizes the gathered information content for biological visualization and medical diagnosis. This work also establishes a general scenario for remodelling existing lasers into synchronized two-colour lasers and thus promotes a wider popularization and application of CRS imaging technologies.

18.
Cancer Sci ; 110(12): 3677-3688, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31646712

ABSTRACT

5-Fluorouracil (5-FU) is a chemotherapeutic agent commonly used to treat esophageal squamous cell carcinoma (ESCC), but acquisition of chemoresistance frequently occurs and the underlying mechanisms are not fully understood. We found that microRNA (miR)-338-5p was underexpressed in ESCC cells with acquired 5-FU chemoresistance. Forced expression of miR-338-5p in these cells resulted in downregulation of Id-1, and restoration of both in vitro and in vivo sensitivity to 5-FU treatment. The effects were abolished by reexpression of Id-1. In contrast, miR-338-5p knockdown induced 5-FU resistance in chemosensitive esophageal cell lines, and knockdown of both miR-338-5p and Id-1 resensitized the cells to 5-FU. In addition, miR-338-5p had suppressive effects on migration and invasion of ESCC cells. Luciferase reporter assay confirmed a direct interaction between miR-338-5p and the 3'-UTR of Id-1. We also found that miR-338-5p was significantly downregulated in tumor tissue and serum samples of patients with ESCC. Notably, low serum miR-338-5p expression level was associated with poorer survival and poor response to 5-FU/cisplatin-based neoadjuvant chemoradiotherapy. In summary, we found that miR-338-5p can modulate 5-FU chemoresistance and inhibit invasion-related functions in ESCC by negatively regulating Id-1, and that serum miR-338-5p could be a novel noninvasive prognostic and predictive biomarker in ESCC.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Inhibitor of Differentiation Protein 1/genetics , MicroRNAs/physiology , Adult , Aged , Animals , Cell Line, Tumor , Cell Movement , Drug Resistance, Neoplasm , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Female , Fluorouracil/pharmacology , Humans , Male , Mice , MicroRNAs/blood , Middle Aged , Neoplasm Invasiveness
19.
Biomedicines ; 7(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30609746

ABSTRACT

The identification and development of cancer biomarkers and targets have greatly accelerated progress towards precision medicine in oncology. [...].

20.
J Biomed Sci ; 25(1): 66, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30157855

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer worldwide and highly prevalent in less developed regions. Management of ESCC is challenging and involves multimodal treatments. Patient prognosis is generally poor especially for those diagnosed in advanced disease stage. One factor contributing to this clinical dismal is the incomplete understanding of disease mechanism, for which this situation is further compounded by the presence of other limiting factors for disease diagnosis, patient prognosis and treatments. Tumor xenograft animal models including subcutaneous tumor xenograft model, orthotopic tumor xenograft model and patient-derived tumor xenograft model are vital tools for ESCC research. Establishment of tumor xenograft models involves the implantation of human ESCC cells/xenografts/tissues into immunodeficient animals, in which mice are most commonly used. Different tumor xenograft models have their own advantages and limitations, and these features serve as key factors to determine the use of these models at different stages of research. Apart from their routine use on basic research to understand disease mechanism of ESCC, tumor xenograft models are actively employed for undertaking preclinical drug screening project and biomedical imaging research.


Subject(s)
Carcinoma, Squamous Cell/surgery , Disease Models, Animal , Esophageal Neoplasms/surgery , Heterografts , Transplantation, Heterologous , Animals , Esophageal Squamous Cell Carcinoma , Heterografts/physiology , Heterografts/transplantation , Humans , Mice , Transplantation, Heterologous/methods
SELECTION OF CITATIONS
SEARCH DETAIL