Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 6422, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015496

ABSTRACT

Storing large amounts of organic carbon, soils are a key but uncertain component of the global carbon cycle, and accordingly, of Earth System Models (ESMs). Soil organic carbon (SOC) dynamics are regulated by a complex interplay of drivers. Climate, generally represented by temperature and moisture, is regarded as one of the fundamental controls. Here, we use 54 forest sites in Switzerland, systematically selected to span near-independent gradients in temperature and moisture, to disentangle the effects of climate, soil properties, and landform on SOC dynamics. We estimated two SOC turnover times, based on bulk soil 14C measurements (τ14C) and on a 6-month laboratory soil incubation (τi). In addition, upon incubation, we measured the 14C signature of the CO2 evolved and quantified the cumulated production of dissolved organic carbon (DOC). Our results demonstrate that τi and τ14C capture the dynamics of contrasting fractions of the SOC continuum. The 14C-based τ14C primarily reflects the dynamics of an older, stabilised pool, whereas the incubation-based τi mainly captures fresh readily available SOC. Mean site temperature did not raise as a critical driver of SOC dynamics, and site moisture was only significant for τi. However, soil pH emerged as a key control of both turnover times. The production of DOC was independent of τi and not driven by climate, but primarily by the content of clay and, secondarily by the slope of the site. At the regional scale, soil physicochemical properties and landform appear to override the effect of climate on SOC dynamics.

2.
Oecologia ; 181(1): 25-37, 2016 May.
Article in English | MEDLINE | ID: mdl-26314342

ABSTRACT

Despite concerns about climate change effects on ecosystems functioning, little is known on how plant assimilate partitioning changes with temperature. Particularly, large temperature effects might occur in cold ecosystems where critical processes are at their temperature limit. In this study, we tested temperature effects on carbon (C) assimilate partitioning in a field experiment at the alpine treeline. We warmed and cooled soils of microcosms planted with Pinus mugo or Leucanthemopsis alpina, achieving daily mean soil temperatures (3-10 cm depth) around 5.8, 12.7 and 19.2 °C in cooled, control and warmed soils. We pulse-labelled these systems with (14)CO2 for one photoperiod and traced (14)C over the successive 4 days. Plant net (14)C uptake increased steadily with soil temperature. However, (14)C amounts in fungal hyphae, soil microbial biomass, soil organic matter, and soil respiration showed a non-linear response to temperature. This non-linear pattern was particularly pronounced in P. mugo, with five times higher (14)C activities in cooled compared to control soils, but no difference between warmed and control soil. Autoradiographic analysis of the spatial distribution of (14)C in soils indicated that temperature effects on the vertical label distribution within soils depended on plant species. Our results show that plant growth, in particular root metabolism, is limited by low soil temperature. As a consequence, positive temperature effects on net C uptake may not be paralleled by similar changes in rhizodeposition. This has important implications for predictions of soil C storage, because rhizodeposits and plant biomass vary strongly in their residence times.


Subject(s)
Asteraceae/physiology , Carbon/metabolism , Climate Change , Pinus/physiology , Plant Roots/physiology , Soil , Temperature , Asteraceae/metabolism , Biomass , Carbon Cycle , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Cold Temperature , Ecosystem , Hot Temperature , Photosynthesis , Pinus/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Plant Shoots/physiology , Soil Microbiology
3.
J Environ Qual ; 41(6): 2033-45, 2012.
Article in English | MEDLINE | ID: mdl-23128760

ABSTRACT

In their natural state, river floodplains are heterogeneous and dynamic ecosystems that may retain and remove large quantities of nitrogen from surface waters. We compared the soil nitrogen dynamics in different types of habitat patches in a restored and a channelized section of a Thur River floodplain (northeast Switzerland). Our objective was to relate the spatiotemporal variability of selected nitrogen pools (ammonium, nitrate, microbial nitrogen), nitrogen transformations (mineralization, nitrification, denitrification), and gaseous nitrogen emission (NO) to soil properties and hydrological processes. Our study showed that soil water content and carbon availability, which depend on sedimentation and inundation dynamics, were the key factors controlling nitrogen pools and processes. High nitrogen turnover rates were measured on gravel bars, characterized by both frequent inundation and high sediment deposition rates, as well as in low-lying alluvial forest patches with a fine-textured, nutrient-rich soil where anaerobic microsites probably facilitated coupled nitrification-denitrification. In contrast, soils of the embankment in the channelized section had comparatively small inorganic nitrogen pools and low transformation rates, particularly those related to nitrate production. Environmental heterogeneity, characteristic of the restored section, favors nitrogen removal by creating sites of high sedimentation and denitrification. Of concern, however, are the locally high NO efflux and the possibility that nitrate could leach from nitrification hotspots.


Subject(s)
Floods , Nitrogen/chemistry , Rivers/chemistry , Soil/chemistry , Environmental Monitoring , Nitrous Oxide/chemistry , Time Factors
4.
Sci Total Environ ; 429: 246-56, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22578524

ABSTRACT

The Riparian Soil Model (RSM) of Brovelli et al. (2012) was applied to study soil nutrient turnover in a revitalized section of the Thur River, North-East Switzerland. In the present work, the model was calibrated on field experimental data, and satisfactorily reproduced soil respiration, organic matter stocks and inorganic nitrogen fluxes. Calibrated rates were in good agreement with the ranges reported in the literature. The main discrepancies between model and observations were for dissolved organic carbon. The sensitivity of the model to environmental factors was also analyzed. Soil temperature was the most influential factor at daily and seasonal scales while effects of soil moisture were weak overall. The ecosystem sensitivity to temperature changes was quantified using the Q10 index. The seasonal behavior observed was related to the influence of other forcing factors and to the different state (density and activity) of the microbial biomass pool during the year. Environmental factors influencing microbial decomposition, such as the C:N ratio and litter input rate, showed intermediate sensitivity. Since these parameters are tightly linked to the vegetation type, the analysis highlighted the effect of the aboveground ecosystem on soil functioning.

5.
Waste Manag ; 32(5): 879-89, 2012 May.
Article in English | MEDLINE | ID: mdl-22143049

ABSTRACT

Landfills are a major anthropogenic source of the greenhouse gas methane (CH(4)). However, much of the CH(4) produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganisms during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH(4) fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH(4) ingress (loading) from the waste body at selected locations. Fluxes of CH(4) into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH(4) concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH(4) fluxes and CH(4) loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH(4) oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH(4) emissions from the test section (daily mean up to ∼91,500µmolm(-2)d(-1)), whereas flux-chamber measurements and CH(4) concentration profiles indicated that at the majority of locations the cover soil was a net sink for atmospheric CH(4) (uptake up to -380µmolm(-2)d(-1)) during the experimental period. Methane concentration profiles also indicated strong variability in CH(4) loading over short distances in the cover soil, while potential methanotrophic activity derived from GPPTs was high (v(max)∼13mmolL(-1)(soil air)h(-1)) at a location with substantial CH(4) loading. Our results provide a basis to assess spatial and temporal variability of CH(4) dynamics in the complex terrain of a landfill-cover soil.


Subject(s)
Methane/metabolism , Refuse Disposal/methods , Soil Microbiology , Air Pollutants/metabolism , Gases , Methane/analysis , Oxidation-Reduction , Soil , Switzerland
6.
Ecology ; 88(12): 3153-63, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18229849

ABSTRACT

Terrestrial ecosystems consist of mutually dependent producer and decomposer subsystems, but not much is known on how their interactions are modified by plant diversity and elevated atmospheric CO2 concentrations. Factorially manipulating grassland plant species diversity and atmospheric CO2 concentrations for five years, we tested whether high diversity or elevated CO2 sustain larger or more active soil communities, affect soil aggregation, water dynamics, or nutrient cycling, and whether plant diversity and elevated CO2 interact. Nitrogen (N) and phosphorus (P) pools, symbiotic N2 fixation, plant litter quality, soil moisture, soil physical structure, soil nematode, collembola and acari communities, soil microbial biomass and microflora community structure (phospholipid fatty acid [PLFA] profiles), soil enzyme activities, and rates of C fluxes to soils were measured. No increases in soil C fluxes or the biomass, number, or activity of soil organisms were detected at high plant diversity; soil H2O and aggregation remained unaltered. Elevated CO2 affected the ecosystem primarily by improving plant and soil water status by reducing leaf conductance, whereas changes in C cycling appeared to be of subordinate importance. Slowed-down soil drying cycles resulted in lower soil aggregation under elevated CO2. Collembola benefited from extra soil moisture under elevated CO2, whereas other faunal groups did not respond. Diversity effects and interactions with elevated CO2 may have been absent because soil responses were mainly driven by community-level processes such as rates of organic C input and water use; these drivers were not changed by plant diversity manipulations, possibly because our species diversity gradient did not extend below five species and because functional type composition remained unaltered. Our findings demonstrate that global change can affect soil aggregation, and we advocate that soil aggregation should be considered as a dynamic property that may respond to environmental changes and feed back on other ecosystem functions.


Subject(s)
Biodiversity , Carbon Dioxide/metabolism , Ecosystem , Plants/metabolism , Soil Microbiology , Biomass , Carbon/metabolism , Carbon Dioxide/analysis , Nitrogen/analysis , Nitrogen/metabolism , Oxygen Consumption , Phosphorus/analysis , Phosphorus/metabolism , Soil/analysis , Soil/parasitology , Species Specificity , Water/analysis , Water/metabolism
7.
Oecologia ; 140(1): 11-25, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15156395

ABSTRACT

Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.


Subject(s)
Air/analysis , Carbon Dioxide/physiology , Poaceae/physiology , Water/physiology , Biomass , Climate , Ecosystem , Humans , Photosynthesis , Plant Leaves/physiology , Plant Transpiration , Rain
8.
Oecologia ; 118(1): 39-49, 1999 Jan.
Article in English | MEDLINE | ID: mdl-20135159

ABSTRACT

The effects of elevated CO(2) on plant biomass and community structure have been studied for four seasons in a calcareous grassland in northwest Switzerland. This highly diverse, semi-natural plant community is dominated by the perennial grass Bromus erectus and is mown twice a year to maintain species composition. Plots of 1.3 m(2) were exposed to ambient or elevated CO(2) concentrations (n = 8) using a novel CO(2) exposure technique, screen-aided CO(2) control (SACC) starting in March 1994. In the 1st year of treatment, the annual harvested biomass (sum of aboveground biomass from mowings in June and October) was not significantly affected by elevated CO(2). However, biomass increased significantly at elevated CO(2) in the 2nd (+20%, P = 0.05), 3rd (+21%, P = 0.02) and 4th years (+29%, P = 0.02). There were no detectable differences in root biomass in the top 8 cm of soil between CO(2) treatments on eight out of nine sampling dates. There were significant differences in CO(2) responsiveness between functional groups (legumes, non-leguminous forbs, graminoids) in the 2nd (P = 0.07) and 3rd (P < 0.001) years of the study. The order of CO(2) responsiveness among functional groups changed substantially from the 2nd to the 3rd year; for example, non-leguminous forbs had the smallest relative response in the 2nd year and the largest in the 3rd year. By the 3rd year of CO(2) exposure, large species-specific differences in CO(2) response had developed. For five important species or genera the order of responsiveness was Lotus corniculatus (+271%), Carex flacca (+249%), Bromus erectus (+33%), Sanguisorba minor (no significant CO(2) effect), and six Trifolium species (a negative response that was not significant). The positive CO(2) responses in Bromus and Carex were most closely related to increases in tiller number. Species richness was not affected by CO(2) treatment, but species evenness increased under elevated CO(2) (modified Hill ratio; P = 0.03) in June of the 3rd year, resulting in a marginally significant increase in species diversity (Simpson's index; P = 0.09). This and other experiments with calcareous grassland plants show that elevated atmospheric CO(2) concentrations can substantially alter the structure of calcareous grassland communities and may increase plant community biomass.

SELECTION OF CITATIONS
SEARCH DETAIL
...