Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37240451

ABSTRACT

Mutations in the GBA1 gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), cause Gaucher disease (GD) and are the most common genetic risk factor for Parkinson's disease (PD). Pharmacological chaperones (PCs) are being developed as an alternative treatment approach for GD and PD. To date, NCGC00241607 (NCGC607) is one of the most promising PCs. Using molecular docking and molecular dynamics simulation we identified and characterized six allosteric binding sites on the GCase surface suitable for PCs. Two sites were energetically more preferable for NCGC607 and located nearby to the active site of the enzyme. We evaluated the effects of NCGC607 treatment on GCase activity and protein levels, glycolipids concentration in cultured macrophages from GD (n = 9) and GBA-PD (n = 5) patients as well as in induced human pluripotent stem cells (iPSC)-derived dopaminergic (DA) neurons from GBA-PD patient. The results showed that NCGC607 treatment increased GCase activity (by 1.3-fold) and protein levels (by 1.5-fold), decreased glycolipids concentration (by 4.0-fold) in cultured macrophages derived from GD patients and also enhanced GCase activity (by 1.5-fold) in cultured macrophages derived from GBA-PD patients with N370S mutation (p < 0.05). In iPSC-derived DA neurons from GBA-PD patients with N370S mutation NCGC607 treatment increased GCase activity and protein levels by 1.1-fold and 1.7-fold (p < 0.05). Thus, our results showed that NCGC607 could bind to allosteric sites on the GCase surface and confirmed its efficacy on cultured macrophages from GD and GBA-PD patients as well as on iPSC-derived DA neurons from GBA-PD patients.


Subject(s)
Gaucher Disease , Parkinson Disease , Humans , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Molecular Docking Simulation , Gaucher Disease/drug therapy , Gaucher Disease/genetics , Cell Culture Techniques , Binding Sites , Glycolipids , Mutation
3.
Neurobiol Aging ; 71: 267.e7-267.e10, 2018 11.
Article in English | MEDLINE | ID: mdl-30146349

ABSTRACT

Common variants and risk factors related to familial and sporadic cases of Parkinson's disease (PD) in diverse populations have been identified at numerous genomic loci. In this study, genetic analysis was performed through a screening of LRRK2 G2019S, GBA mutations (L444P, N370S), and common variants (E326K, T369M) in 762 PD patients and in 400 controls. Next-generation sequencing analysis of 22 PD-related genes in 28 early-onset PD cases from North-Western region of Russia was performed. The frequency of LRRK2 G2019S mutation was 5.8% in familial and 0.5% in sporadic PD cases. The frequency of GBA mutations (L444P, N370S) in PD patients was higher compared to controls (odds ratio [OR] = 6.9, 95% confidence interval [CI], 0.9-53.13, p = 0.031), particularly in patients with early-onset compared to late-onset PD (OR = 3.90 [95% CI, 1.2-13.2], p = 0.009). The frequency of E326K and T369M was twice higher among PD patients than in controls (OR = 2.24, 95% CI 1.05-4.79, p = 0.033). However, the screening of 22 PD-related genes using our novel panel of gene resequencing in our series of 28 early-onset PD failed to identify any mutations. LRRK2 and GBA mutations were found to be common risk factors for PD in North-Western region of Russia.


Subject(s)
Genetic Predisposition to Disease , Parkinson Disease/genetics , Adult , Aged , Aged, 80 and over , Asian People/genetics , Case-Control Studies , DNA Mutational Analysis , Female , Gene Frequency , Genetic Association Studies , Genetic Testing , Humans , Male , Middle Aged , Mutation , Russia , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...