Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Genomics ; 16(1): 329, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38098042

ABSTRACT

Osteoporosis is a systemic, multifactorial disorder of bone mineralization. Many factors contributing to the development of osteoporosis have been identified so far, including gender, age, nutrition, lifestyle, exercise, drug use, as well as a range of comorbidities. In addition to environmental and lifestyle factors, molecular genetic factors account for 50-85% of osteoporosis cases. For example, the vitamin D receptor (VDR), collagen type I (COL1), estrogen receptor (ER), apolypoprotein Е (ApoE), bone morphogenetic protein (BMP), and Low-density lipoprotein receptor-related protein 5 (LRP5) are all involved in the pathogenesis of osteoporosis. Among the candidate genes, the pathogenic variants in which are involved in the pathogenesis of osteoporosis is FGFR2. Additionally, FGFs/FGFRs-dependent signaling has been shown to regulate skeletal development and has been linked to a plethora of heritable disorders of the musculoskeletal system. In this study we present the clinical, biochemical and radiological findings, as well as results of molecular genetic testing of a 13-year-old male proband with heritable osteoporosis, arthralgia and multiple fractures and a family history of abnormal bone mineralization and fractures. Whole exome sequencing found a heterozygous previously undescribed variant in the FGFR2 gene (NM_000141.5) (GRCh37.p13 ENSG00000066468.16: g.123298133dup; ENST00000358487.5:c.722dup; ENSP00000351276.5:p.Asn241LysfsTer43). The same variant was found in two affected relatives. These data lead us to believe that the variant in FGFR2 found in our proband and his relatives could be related to their phenotype. Therefore, modern methods of molecular genetic testing can allow us to differentiate between osteogenesis imperfecta and other bone mineralization disorders.


Subject(s)
Fractures, Bone , Osteogenesis Imperfecta , Osteoporosis , Male , Humans , Adolescent , Osteoporosis/genetics , Osteogenesis Imperfecta/genetics , Phenotype , Mutation , Receptor, Fibroblast Growth Factor, Type 2/genetics
2.
Mol Genet Genomic Med ; 8(7): e1228, 2020 07.
Article in English | MEDLINE | ID: mdl-32412666

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) are a group of neurodegenerative disorders characterized by an accumulation of lipofuscin in the body's tissues. NCLs are associated with variable age of onset and progressive symptoms including seizures, psychomotor decline, and loss of vision. METHODS: We describe the clinical and molecular characteristics of four Russian patients with NCL (one female and three males, with ages ranging from 4 to 5 years). The clinical features of these patients include cognitive and motor deterioration, seizures, stereotypies, and magnetic resonance imaging signs of brain atrophy. Exome sequencing was performed to identify the genetic variants of patients with NCL. Additionally, we tested 6,396 healthy Russians for NCL alleles. RESULTS: We identified five distinct mutations in four NCL-associated genes of which two mutations are novel. These include a novel homozygous frameshift mutation in the CLN6 gene, a compound heterozygous missense mutation in the KCTD7 gene, and previously known mutations in KCTD7, TPP1, and MFSD8 genes. Furthermore, we estimated the Russian population carrier frequency of pathogenic and likely pathogenic variants in 13 genes associated with different types of NCL. CONCLUSION: Our study expands the spectrum of mutations in lipofuscinosis. This is the first study to describe the molecular basis of NCLs in Russia and has profound and numerous clinical implications for diagnosis, genetic counseling, genotype-phenotype correlations, and prognosis.


Subject(s)
Mutation , Neuronal Ceroid-Lipofuscinoses/genetics , Population/genetics , Aminopeptidases/genetics , Child , Child, Preschool , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Female , Gene Frequency , Heterozygote , Humans , Male , Membrane Proteins/genetics , Membrane Transport Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Potassium Channels/genetics , Russia , Serine Proteases/genetics , Tripeptidyl-Peptidase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...