Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34066252

ABSTRACT

This work presents our study results of the magnetization of multilayer UV-reduced graphene oxide (UV-rGO), polymer matrix (polystyrene), and a conjugated composite based on them. The mesoscopic structure of the composites synthesized in this work was studied by such methods as X-ray diffraction, SEM, as well as NMR-, IR- and Raman spectroscopy. The magnetization of the composites under investigation and their components was measured using a vibrating-sample magnetometer. It has been shown that the UV-reduction process leads to the formation of many submicron holes distributed inside rGO flakes, which can create edge defects, causing possibly magnetic order in the graphite samples under investigation on the mesoscopic level. This article provides an alternative explanation for the ferromagnetic hysteresis loop in UV-rGO on the base of superconductivity type-II.

2.
Nanomaterials (Basel) ; 11(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562552

ABSTRACT

The use of reduced graphene oxide (r-GO) is a promising way of fabricating organic-inorganic composites with unique electrical and magnetic properties. In our work, polystyrene/r-GO composites were synthesized, in which both the components are linked together by covalent bonds. The r-GO used differs from the graphene obtained from graphite through mechanical exfoliation using the 'scotch tape' by presenting many structural defects. Binding in the composite structure between the components was confirmed by infrared spectroscopy. Elemental analysis was carried out by energy dispersive X-ray analysis. Scanning electron microscopy, X-ray diffraction, and Raman spectroscopy were used to monitor the 2D-order in exfoliated r-GO galleries. Using a vibrating-sample magnetometer, we have shown that the composite magnetization loops demonstrate type-II superconductivity up to room temperature due to r-GO flakes. We believe that a strain field in the r-GO flakes covalently binding to a polymeric matrix is responsible for the superconductivity phenomena.

3.
Sci Rep ; 6: 24270, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052599

ABSTRACT

We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is "frozen" at high temperatures (above 260 K), but it unexpectedly becomes "unfrozen" at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors.

4.
J Phys Chem B ; 114(12): 4159-65, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20201498

ABSTRACT

The 4-generation carbosilane dendrimer with terminal cyanobiphenyl mesogenic groups in dilute solution of CDCl(3) was investigated using (1)H NMR technique. The spectrum was obtained and the relaxation time, T(1), was measured in the temperature range 320-225 K. For the first time, the extrema of T(1) values were achieved for majority of the dendrimer functional groups. The values of activation energies of the dendrimer functional groups were obtained. The relaxation data for outer and inner methyl groups show that the dendrimer investigated has dense corona and hollow core. This structure is formed because the mesogenic groups do not allow terminal segments to penetrate into the dendrimer, that is, the backfolding effect is absent. The NMR spectral and relaxation data give evidence for changing conformation of the dendrimer internal segments with decreasing temperature. This reorganization is most likely connected with a change of dendrimer size. We suppose that our experimental results will provide additional information for understanding principles of dendrimer nanocontainer operation. NMR can possibly be a tool for indicating the encapsulation effect as well as the dendrimer effective size.


Subject(s)
Dendrimers/chemistry , Magnetic Resonance Spectroscopy/methods , Silanes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...