Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
BMC Med ; 22(1): 254, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902659

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aß plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-ß and tau pathologies, and their correlation with AD progression. METHODS: A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1ß, and GFAP antibodies. AD-specific markers, amyloid-ß (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS: Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-ß (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-ß (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1ß, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS: Elevated PsEVs, upregulated amyloid-ß (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.


Subject(s)
Alzheimer Disease , Extracellular Vesicles , Humans , Alzheimer Disease/pathology , Extracellular Vesicles/metabolism , Male , Aged , Female , Case-Control Studies , Amyloid beta-Peptides/metabolism , Aged, 80 and over , Neuroinflammatory Diseases , Biomarkers/blood , Synapses/pathology , Cognitive Dysfunction , Middle Aged , tau Proteins/metabolism
2.
Sci Rep ; 14(1): 9347, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654096

ABSTRACT

Breast cancer, a leading cause of female mortality due to delayed detection owing to asymptomatic nature and limited early diagnostic tools, was investigated using a multi-modal approach. Plasma-derived small EVs from breast cancer patients (BrCa, n = 74) and healthy controls (HC, n = 30) were analyzed. Small EVs (n = 104), isolated through chemical precipitation, underwent characterization via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Validation involved antibody-based tests (TSG101, CD9, CD81, CD63). Infrared spectra of small EVs were obtained, revealing significant differences in lipid acyl chains, particularly in the C-H stretching of CH3. The study focused on the lipid region (3050-2900 cm-1), identifying peaks (3015 cm-1, 2960 cm-1, 2929 cm-1) as distinctive lipid characteristics. Spectroscopic lipid-to-lipid ratios [(I3015/I2929), (I2960/I2929)] emerged as prominent breast cancer markers. Exploration of protein, nucleic acid, and carbohydrate ratios indicated variations in alpha helices, asymmetric C-H stretching vibrations, and C-O stretching at 1033 cm-1. Principal component analysis (PCA) successfully differentiated BrCa and HC small EVs, and heatmap analysis and receiver operating characteristic (ROC) curve evaluations underscored the discriminatory power of lipid ratios. Notably, (I2960/I2929) exhibited 100% sensitivity and specificity, highlighting its potential as a robust BrCa sEV marker for breast cancer detection.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Extracellular Vesicles , Lipids , Spectrophotometry, Infrared , Humans , Breast Neoplasms/diagnosis , Female , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Lipids/chemistry , Lipids/analysis , Spectrophotometry, Infrared/methods , Middle Aged , Adult , Aged
3.
Heliyon ; 10(7): e29079, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38596136

ABSTRACT

The survival rate over a five-year period for rare pancreatic neuroendocrine tumors (PanNET) is notably lower compared to other neuroendocrine tumors due to late-stage detection, which is a consequence of the absence of suitable diagnostic markers; therefore, there exists a critical need for an early-stage biomarker-specific to PanNETs. This study introduces a novel approach, investigating the impact of small extracellular vesicles (sEV) in PanNET growth and metastasis. As proof of concept, this study shows a correlation between sEV concentration in controls and PanNET. Notably, higher sEV concentrations were observed in PanNETs than in controls (p < 0.0001) with a sensitivity of 100%. Further, apparent differences were observed in the sEV concentrations between controls and grades 1 PanNET (p = 0.005). The expression of sEV markers was confirmed using CD63, TSG101, CD9, Flotillin-1, and GAD65 antibodies. Additionally, the expression of cancer marker BIRC2/cIAP1 (p = 0.002) and autophagy marker Beclin-1 (p = 0.02) were observed in plasma-derived sEVs and PanNET tissue. This study represents the first to indicate the increased secretion of sEV in PanNET patients' blood plasma, proposing potential function of sEV as a new biomarker for early-stage PanNET detection.

4.
Sci Rep ; 13(1): 21021, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030709

ABSTRACT

Pancreatic Neuroendocrine tumors (PanNET) are challenging to diagnose and often detected at advanced stages due to a lack of specific and sensitive biomarkers. This study utilized proteomics as a valuable approach for cancer biomarker discovery; therefore, mass spectrometry-based proteomic profiling was conducted on plasma samples from 12 subjects (3 controls; 5 Grade I, 4 Grade II PanNET patients) to identify potential proteins capable of effectively distinguishing PanNET from healthy controls. Data are available via ProteomeXchange with the identifier PXD045045. 13.2% of proteins were uniquely identified in PanNET, while 60% were commonly expressed in PanNET and controls. 17 proteins exhibiting significant differential expression between PanNET and controls were identified with downstream analysis. Further, 5 proteins (C1QA, COMP, HSP90B1, ITGA2B, and FN1) were selected by pathway analysis and were validated using Western blot analysis. Significant downregulation of C1QA (p = 0.001: within groups, 0.03: control vs. grade I, 0.0013: grade I vs. grade II) and COMP (p = 0.011: within groups, 0.019: control vs grade I) were observed in PanNET Grade I & II than in controls. Subsequently, ELISA on 38 samples revealed significant downregulation of C1QA and COMP with increasing disease severity. This study shows the potential of C1QA and COMP in the early detection of PanNET, highlighting their role in the search for early-stage (Grade-I and Grade-II) diagnostic markers and therapeutic targets for PanNET.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/pathology , Proteomics , Early Detection of Cancer , Biomarkers, Tumor/analysis
5.
Front Neurosci ; 17: 1174951, 2023.
Article in English | MEDLINE | ID: mdl-38033547

ABSTRACT

Background: Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods: A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results: In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion: We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.

6.
BMC Med ; 21(1): 335, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37667227

ABSTRACT

BACKGROUND: Parkinson's disease is generally asymptomatic at earlier stages. At an early stage, there is an extensive progression in the neuropathological hallmarks, although, at this stage, diagnosis is not possible with currently available diagnostic methods. Therefore, the pressing need is for susceptibility risk biomarkers that can aid in better diagnosis and therapeutics as well can objectively serve to measure the endpoint of disease progression. The role of small extracellular vesicles (sEV) in the progression of neurodegenerative diseases could be potent in playing a revolutionary role in biomarker discovery. METHODS: In our study, the salivary sEV were efficiently isolated by chemical precipitation combined with ultrafiltration from subjects (PD = 70, healthy controls = 26, and prodromal PD = 08), followed by antibody-based validation with CD63, CD9, GAPDH, Flotillin-1, and L1CAM. Morphological characterization of the isolated sEV through transmission electron microscopy. The quantification of sEV was achieved by fluorescence (lipid-binding dye-labeled) nanoparticle tracking analysis and antibody-based (CD63 Alexa fluor 488 tagged sEV) nanoparticle tracking analysis. The total alpha-synuclein (α-synTotal) in salivary sEVs cargo was quantified by ELISA. The disease severity staging confirmation for n = 18 clinically diagnosed Parkinson's disease patients was done by 99mTc-TRODAT-single-photon emission computed tomography. RESULTS: We observed a significant increase in total sEVs concentration in PD patients than in the healthy control (HC), where fluorescence lipid-binding dye-tagged sEV were observed to be higher in PD (p = 0.0001) than in the HC using NTA with a sensitivity of 94.34%. In the prodromal PD cases, the fluorescence lipid-binding dye-tagged sEV concentration was found to be higher (p = 0.008) than in HC. This result was validated through anti-CD63 tagged sEV (p = 0.0006) with similar sensitivity of 94.12%. We further validated our findings with the ELISA based on α-synTotal concentration in sEV, where it was observed to be higher in PD (p = 0.004) with a sensitivity of 88.24%. The caudate binding ratios in 99mTc-TRODAT-SPECT represent a positive correlation with sEV concentration (r = 0.8117 with p = 0.0112). CONCLUSIONS: In this study, for the first time, we have found that the fluorescence-tagged sEV has the potential to screen the progression of disease with clinically acceptable sensitivity and can be a potent early detection method for PD.


Subject(s)
Extracellular Vesicles , Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Fluorescence , Early Diagnosis , Antibodies , Lipids
7.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188908, 2023 07.
Article in English | MEDLINE | ID: mdl-37172650

ABSTRACT

Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.


Subject(s)
Exosomes , MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , Exosomes/metabolism , Neoplasms/pathology , MicroRNAs/genetics , Cell Communication , RNA, Long Noncoding/genetics , Tumor Microenvironment/genetics
8.
Transl Neurodegener ; 12(1): 7, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36747288

ABSTRACT

Neurodegenerative diseases are a set of progressive and currently incurable diseases that are primarily caused by neuron degeneration. Neurodegenerative diseases often lead to cognitive impairment and dyskinesias. It is now well recognized that molecular events precede the onset of clinical symptoms by years. Over the past decade, intensive research attempts have been aimed at the early diagnosis of these diseases. Recently, exosomes have been shown to play a pivotal role in the occurrence and progression of many diseases including cancer and neurodegenerative diseases. Additionally, because exosomes can cross the blood-brain barrier, they may serve as a diagnostic tool for neural dysfunction. In this review, we detail the mechanisms and current challenges of these diseases, briefly review the role of exosomes in the progression of neurodegenerative diseases, and propose a novel strategy based on salivary neuronal exosomes and nanoparticle tracking analysis that could be employed for screening the early onset of neurodegenerative diseases.


Subject(s)
Exosomes , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/diagnosis , Early Detection of Cancer , Blood-Brain Barrier , Neurons
9.
NPJ Parkinsons Dis ; 8(1): 66, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35650269

ABSTRACT

Parkinson's disease (PD) is a neurological disorder that affects the movement of the human body. It is primarily characterized by reduced dopamine levels in the brain. The causative agent of PD is still unclear but it is generally accepted that α-synuclein has a central role to play. It is also known that gap-junctions and associated connexins are complicated structures that play critical roles in nervous system signaling and associated misfunctioning. Thus, our current article emphasizes how, alongside α-synuclein, ion-channels, gap-junctions, and related connexins, all play vital roles in influencing multiple metabolic activities of the brain during PD. It also highlights that ion-channel and gap-junction disruptions, which are primarily mediated by their structural-functional changes and alterations, have a role in PD. Furthermore, we discussed available drugs and advanced therapeutic interventions that target Parkinson's pathogenesis. In conclusion, it warrants creating better treatments for PD patients. Although, dopaminergic replenishment therapy is useful in treating neurological problems, such therapies are, however, unable to control the degeneration that underpins the disease, thereby declining their overall efficacy. This creates an additional challenge and an untapped scope for neurologists to adopt treatments for PD by targeting the ion-channels and gap-junctions, which is well-reviewed in the present article.

10.
Front Neurosci ; 16: 893251, 2022.
Article in English | MEDLINE | ID: mdl-36685230

ABSTRACT

Autism spectrum disorder (ASD) is considered a complicated neurodevelopment disorder with rising prevalence globally. ASD is characterized by a series of events including varying degrees of defects in communication, learning, and social interaction which is accompanied by stereotypical behavioral patterns. Despite extensive research, the current diagnosis for ASD is complex and almost solely based on the behavioral assessments of the suspected individuals. The multifactorial etiopathology of this disease along with the diversity of symptoms among different individuals adds to the current intricacies for accurate prognosis of ASD. Hence, there exists a dire need for biologically relevant biomarkers for an early diagnosis and for tracking the efficacy of therapeutic interventions. Until recently, among various biofluids, saliva has gained increasing interest for biomarker identification, the advantages include the non-invasive nature and ease of sample handling. This mini-review aims to provide a succinct summary of recent literature on saliva-based diagnostic modalities for ASD, examine various studies that highlight the potential use of proteomic and/or RNA-based biomarkers. Finally, some conclusive perspectives of using the salivary system for ASD mechanistic details and diagnosis are also discussed.

11.
Int J Mol Sci ; 22(1)2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33406804

ABSTRACT

Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer's disease (AD) is among the most common of such disorders, followed by Parkinson's disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30-150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.


Subject(s)
Biomarkers/analysis , Exosomes/genetics , MicroRNAs/analysis , Neurodegenerative Diseases/diagnosis , Animals , Early Diagnosis , Humans , MicroRNAs/genetics , Neurodegenerative Diseases/genetics
12.
Acta Biomater ; 120: 20-37, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32413577

ABSTRACT

Biomineralization can be considered as nature's strategy to produce and sustain biominerals, primarily via creation of hard tissues for protection and support. This review examines the biomineralization process within the hard tissues of the human body with special emphasis on the mechanisms and principles of bone and teeth mineralization. We describe the detailed role of proteins and inorganic ions in mediating the mineralization process. Furthermore, we highlight the various available models for studying bone physiology and mineralization starting from the historical static cell line-based methods to the most advanced 3D culture systems, elucidating the pros and cons of each one of these methods. With respect to the mineralization process in teeth, enamel and dentin mineralization is discussed in detail. The key role of intrinsically disordered proteins in modulating the process of mineralization in enamel and dentine is given attention. Finally, nanotechnological interventions in the area of bone and teeth mineralization, diseases and tissue regeneration is also discussed. STATEMENT OF SIGNIFICANCE: This article provides an overview of the biomineralization process within hard tissues of the human body, which encompasses the detailed mechanism innvolved in the formation of structures like teeth and bone. Moreover, we have discussed various available models used for studying biomineralization and also explored the nanotechnological applications in the field of bone regeneration and dentistry.


Subject(s)
Biomineralization , Tooth , Bone Regeneration , Bone and Bones , Humans , Proteins
13.
J Neurosci Methods ; 347: 108980, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33075328

ABSTRACT

BACKGROUND: Cognition is the ability of a person to think, remember, and interconnect ideas from various dimensions to strive for solutions. Cognitive defects accompany all forms of dementia and the decline in cognition is a most feared aspect. Mild cognitive impairment is considered as a transitional phase and the progressive loss in cognition can finally lead to Alzheimer's disease. NEW METHOD: In this study, we demonstrated a novel method based on nanoparticle tracking analysis (NTA) technique to directly correlate salivary exosomes concentration with the progression of cognitive impairment (CI) in Alzheimer's disease (AD).This could open up the possibility for an early and cost-effective screening of Alzheimer's disease. RESULTS: Using our novel method, the total salivary exosomes concentration was measured by NTA technique, followed by validation of key exosomal cargo proteins through an automated western blot analyzer. We observed significant differences in salivary exosomes concentration among the groups of cognitively impaired and Alzheimer's disease patients (p = 0.0023) compared to the healthy control cohort. The method was validated through CD63 (exosomes surface marker) fluorescent antibody based quantification, which yielded a similar outcome (p = 0.0286). We further corroborated our findings with the expression level of oligomeric amyloid-beta, phosphorylated-tau protein from salivary exosomes. The Aß oligomer/fibril abundance (p = 0.0291), phospho-tau (p = 0.0325) and Aß protein abundance (p = 0.0198) was significantly higher in Alzheimer's and cognitively impaired patients in comparison to the healthy controls. COMPARISON WITH EXISTING METHOD(S): There are few molecular biomarkers available to differentiate between various stages of cognitive impairment. Moreover, the current methodologies utilizing the few biomarkers available are either invasive or expensive; also, for a patient with mild cognitive complains, it is impractical to use these as a screening tool. CONCLUSION: Our initial results indicate that the salivary exosomes concentration based on the nano-tracking technique has the potential to be used as a cost-effective screening method for early disease detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Exosomes , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Disease Progression , Humans , tau Proteins
14.
Biomolecules ; 10(11)2020 11 11.
Article in English | MEDLINE | ID: mdl-33187273

ABSTRACT

In recent years, studies on mineralized tissues are becoming increasingly popular not only due to the diverse mechanophysical properties of such materials but also because of the growing need to understand the intricate mechanism involved in their assembly and formation. The biochemical mechanism that results in the formation of such hierarchical structures through a well-coordinated accumulation of inorganic and organic components is termed biomineralization. Some prime examples of such tissues in the human body are teeth and bones. Our current study is an attempt to dissect the compositional details of the inorganic and organic components in four major types of human teeth using mass spectrometry-based approaches. We quantified inorganic materials using inductively coupled plasma resonance mass spectrometry (ICP-MS). Differential level of ten different elements, Iron (Fe), Cadmium (Cd), Potassium (K), Sulphur (S), Cobalt (Co), Magnesium (Mg), Manganese (Mn), Zinc (Zn), Aluminum (Al), and Copper (Cu) were quantified across different teeth types. The qualitative and quantitative details of their respective proteomic milieu revealed compositional differences. We found 152 proteins in total tooth protein extract. Differential abundance of proteins in different teeth types were also noted. Further, we were able to find out some significant protein-protein interaction (PPI) backbone through the STRING database. Since this is the first study analyzing the differential details of inorganic and organic counterparts within teeth, this report will pave new directions to the compositional understanding and development of novel in-vitro repair strategies for such biological materials.


Subject(s)
Minerals/chemistry , Proteins/chemistry , Tooth/chemistry , Adult , Female , Humans , Male , Mass Spectrometry , Minerals/metabolism , Proteins/metabolism , Proteomics , Tooth/metabolism , Young Adult
15.
Sci Rep ; 9(1): 17517, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754162

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Int J Mol Sci ; 20(16)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31430851

ABSTRACT

The importance of whole protein extracts from different types of human teeth in modulating the process of teeth biomineralization is reported. There are two crucial features in protein molecules that result in efficient teeth biomineralization. Firstly, the unique secondary structure characteristics within these proteins i.e. the exclusive presence of a large amount of intrinsic disorder and secondly, the presence of post-translational modifications (PTM) like phosphorylation and glycosylation within these protein molecules. The present study accesses the structural implications of PTMs in the tooth proteins through scanning electron microscopy and transmission electron microscopy. The deglycosylated/dephosphorylated protein extracts failed to form higher-order mineralization assemblies. Furthermore, through nanoparticle tracking analysis (NTA) we have shown that dephosphorylation and deglycosylation significantly impact the biomineralization abilities of the protein extract and resulted in smaller sized clusters. Hence, we propose these post-translational modifications are indispensable for the process of teeth biomineralization. In addition to basic science, this study would be worth consideration while designing of biomimetics architecture for an efficient peptide-based teeth remineralization strategy.


Subject(s)
Biomineralization , Proteins/metabolism , Tooth/physiology , Calcium Phosphates/metabolism , Humans , Intrinsically Disordered Proteins/metabolism , Protein Processing, Post-Translational
18.
Sensors (Basel) ; 19(15)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374817

ABSTRACT

The durability of metal-based constructions, especially those containing reinforced concrete, is mainly limited by corrosion processes. Diamond-like carbon (DLC)-coated silicon (Si) wafers provide a chemically inert and mechanically robust sensing interface for application in aggressive environments. In this study, iron-sensitive dyes, i.e., 2,3-dihydroxypyridine (DHP) and 1,2-dihydroxybenzol (DHB), were coated onto DLC-modified Si wafers for evaluating the potential of detecting corrosion processes via evanescent field absorption spectroscopy using Fourier-transform infrared spectroscopy. The obtained IR spectra reveal discernible changes of the dye layer after exposure to iron solutions, which indicates that indeed corrosion processes may be studied at molecular level detail.

19.
Sci Rep ; 9(1): 9314, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249316

ABSTRACT

The present study describes an efficient method for isolation and purification of protein extracts from four types of human teeth i.e. molar, premolar, canine, and incisor. Detailed structural characterization of these protein extracts was done by Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) which showed that a major fraction of the proteins present are unstructured in nature including primarily random coils in addition to the other structures like extended beta (ß) structure, poly-l-proline-type II (PPII) helix, turns, with only a small fraction constituting of ordered structures like alpha (α) helix and ß sheets. These resultant labile structures give the proteins the necessary flexibility that they require to interact with a variety of substrates including different ions like calcium and phosphates and for other protein-protein interactions. We also did initial studies on the mineralization of calcium phosphate with the protein extracts. Nanoparticle tracking analysis (NTA) show an increase in the size of calcium phosphate accumulation in the presence of protein extracts. We propose that protein extracts elevate the crystallization process of calcium phosphate. Our current biophysical study provides novel insights into the structural characterization of proteins from human teeth and their implications in understanding the tooth biomineralization. As per our knowledge, this is the first report which focuses on the whole protein extraction from different types of human teeth as these extracts imitate the in vivo tooth mineralization.


Subject(s)
Biomineralization , Proteins/chemistry , Proteins/metabolism , Tooth/metabolism , Adolescent , Adult , Female , Humans , Male , Protein Structure, Secondary , Proteins/isolation & purification , Young Adult
20.
ACS Omega ; 3(6): 6190-6198, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-31458801

ABSTRACT

Photonic design and optimization of thin-film polycrystalline diamond waveguides are shown, serving as advanced evanescent field transducers in the mid-infrared fingerprint regime (2000-909 cm-1; 5-11 µm). Design constraints inherent to optical/system considerations and the material were implemented in a finite element method (FEM)-based simulation method that allowed three-dimensional modeling of the overall structure. Thus, lateral mode confinement, attenuation in the direction of radiation propagation, and physical resilience were evaluated. In a final step, the designed structures were fabricated, and their utility in combination with a broadly tunable external cavity quantum cascade laser for chemical sensing of a liquid phase analyte was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...