Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol ; 46(6): 633-40, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19107391

ABSTRACT

The presence of selected tetracycline resistance (TcR) genes was studied in different Greek seawater habitats, originated from wastewater treatment facilities, fishfarm, and coastal environments. The methods employed included assessment of the presence of twelve gene clusters by PCR, followed by hybridization with specific probes, in habitat extracted DNA, Tc(R) bacteria, and exogenous isolated plasmids conferring TcR. The direct DNA-based analysis showed that tet(A) and tet(K) genes were detected in all habitats, whilst tet(C) and tet(E) were present in fishfarm and wastewater effluent samples and tet(M) was detected in fish-farm and coastal samples. Resistance genes tet(h), tet(C), tet(K), and tet(M) were detected in 60 of the 89 isolates screened. These isolates were identified by fatty acid methyl ester analysis (FAME) as Stenotrophomonas, Acinetobacter, Pseudomonas, Bacillus, and Staphylococcus strains. The presence of the TcR genes in 15% of the bacterial isolates coincided with the presence of IncP plasmids. A habitat-specific dissemination of IncP alpha plasmids in wastewater effluent isolates and of IncP beta plasmids in fishfarm isolates was observed. Exogenous isolation demonstrated the presence of plasmids harbouring Tc(R) genes in all the habitats tested. Plasmids were shown to carry tet(h), tet(C), tet(E), and tet(K) genes. It is concluded that TcR genes are widespread in the seawater habitats studied and often occur on broad host range plasmids that seem to be well disseminated in the bacterial communities.


Subject(s)
Bacteria , Ecosystem , Seawater/microbiology , Tetracycline Resistance/genetics , Aquaculture , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/analysis , DNA, Bacterial/isolation & purification , Fatty Acids/analysis , Greece , Microbial Sensitivity Tests , Plasmids/isolation & purification , Polymerase Chain Reaction , Prevalence , Waste Disposal, Fluid , Water Purification
2.
Curr Microbiol ; 51(4): 211-6, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16132462

ABSTRACT

A range of European habitats was screened by PCR for detection of the oxytetracycline resistance genes otr(A) and otr(B), found in the oxytetracycline-producing strain Streptomyces rimosus. Primers were developed to detect these otr genes in tetracycline-resistant (Tc(R)) streptomycete isolates from environmental samples. Samples were obtained from bulk and rhizosphere soil, manure, activated sludge and seawater. The majority of Tc(R) streptomycetes originated from bulk and rhizosphere soil. Fewer Tc(R) streptomycetes were isolated from manure and seawater and none from sewage. By PCR, three out of 217 isolates were shown to contain the otr(A) gene and 13 out of 217 the otr(B) gene. Surprisingly, these genes were detected in taxonomic groups not known as tetracycline-producing strains. The majority of the otr gene-carrying strains was assigned to S. exfoliatus or S. rochei and originated from all habitats from which Tc(R) streptomycetes were obtained. Our results indicated that the occurrence of otr(A) and otr(B) genes in natural environments was limited and that otr(B), in comparison to otr(A), seemed to be more common.


Subject(s)
Bacterial Proteins/genetics , Oxytetracycline/pharmacology , Soil Microbiology , Streptomyces/genetics , Tetracycline Resistance/genetics , Bacterial Proteins/analysis , DNA Primers/genetics , Genes, Bacterial/genetics , Polymerase Chain Reaction/methods , Streptomyces/drug effects , Streptomyces/isolation & purification
3.
FEMS Microbiol Ecol ; 42(2): 277-88, 2002 Nov 01.
Article in English | MEDLINE | ID: mdl-19709288

ABSTRACT

The prevalence of selected streptomycin (Sm)-resistance genes, i.e. aph (3''), aph (6)-1d, aph (6)-1c, ant (3'') and ant (6), was assessed in a range of pristine as well as polluted European habitats. These habitats included bulk and rhizosphere soils, manure from farm animals, activated sludge from wastewater treatment plants and seawater. The methods employed included assessments of the prevalence of the genes in habitat-extracted DNA by PCR, followed by hybridisation with specific probes, Sm-resistant culturable bacteria and exogenous isolation of plasmids carrying Sm-resistance determinants. The direct DNA-based analysis showed that aph (6)-1d genes were most prevalent in the habitats examined. The presence of the other four Sm-modifying genes was demonstrated in 58% of the tested habitats. A small fraction of the bacterial isolates (8%) did not possess any of the selected Sm-modifying genes. These isolates were primarily obtained from activated sludge and manure. The presence of Sm-modifying genes in the isolates often coincided with the presence of IncP plasmids. Exogenous isolation demonstrated the presence of plasmids of 40-200 kb in size harbouring Sm-resistance genes from all the environments tested. Most plasmids were shown to carry the ant (3'') gene, often in combination with other Sm-resistance genes, such as aph (3'') and aph (6)-1d. The most commonly found Sm-modifying gene on mobile genetic elements was ant (3''). Multiple Sm-resistance genes on the same genetic elements appeared to be the rule rather than the exception. It is concluded that Sm-resistance genes are widespread in the environmental habitats studied and often occur on mobile genetic elements and ant (3'') was most often encountered.

SELECTION OF CITATIONS
SEARCH DETAIL
...