Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
bioRxiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38948770

ABSTRACT

The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.

2.
Science ; 385(6704): 91-99, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963839

ABSTRACT

Sickle cell disease (SCD) is a prevalent, life-threatening condition attributable to a heritable mutation in ß-hemoglobin. Therapeutic induction of fetal hemoglobin (HbF) can ameliorate disease complications and has been intently pursued. However, safe and effective small-molecule inducers of HbF remain elusive. We report the discovery of dWIZ-1 and dWIZ-2, molecular glue degraders of the WIZ transcription factor that robustly induce HbF in erythroblasts. Phenotypic screening of a cereblon (CRBN)-biased chemical library revealed WIZ as a previously unknown repressor of HbF. WIZ degradation is mediated by recruitment of WIZ(ZF7) to CRBN by dWIZ-1, as resolved by crystallography of the ternary complex. Pharmacological degradation of WIZ was well tolerated and induced HbF in humanized mice and cynomolgus monkeys. These findings establish WIZ degradation as a globally accessible therapeutic strategy for SCD.


Subject(s)
Anemia, Sickle Cell , Antisickling Agents , Fetal Hemoglobin , Kruppel-Like Transcription Factors , Nerve Tissue Proteins , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Antisickling Agents/chemistry , Antisickling Agents/pharmacology , Antisickling Agents/therapeutic use , Crystallography, X-Ray , Drug Discovery , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , Kruppel-Like Transcription Factors/metabolism , Macaca fascicularis , Nerve Tissue Proteins/metabolism , Proteolysis/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics
3.
Sci Adv ; 10(26): eadl2675, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38941473

ABSTRACT

Declined memory is a hallmark of Alzheimer's disease (AD). Experiments in rodents and human postmortem studies suggest that serotonin (5-hydroxytryptamine, 5-HT) plays a role in memory, but the underlying mechanisms are unknown. Here, we investigate the role of 5-HT 2C receptor (5-HT2CR) in regulating memory. Transgenic mice expressing a humanized HTR2C mutation exhibit impaired plasticity of hippocampal ventral CA1 (vCA1) neurons and reduced memory. Further, 5-HT neurons project to and synapse onto vCA1 neurons. Disruption of 5-HT synthesis in vCA1-projecting neurons or deletion of 5-HT2CRs in the vCA1 impairs neural plasticity and memory. We show that a selective 5-HT2CR agonist, lorcaserin, improves synaptic plasticity and memory in an AD mouse model. Cumulatively, we demonstrate that hippocampal 5-HT2CR signaling regulates memory, which may inform the use of 5-HT2CR agonists in the treatment of dementia.


Subject(s)
Alzheimer Disease , Memory , Mice, Transgenic , Neuronal Plasticity , Receptor, Serotonin, 5-HT2C , Animals , Humans , Receptor, Serotonin, 5-HT2C/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Memory/drug effects , Memory/physiology , Mice , Neuronal Plasticity/drug effects , Alzheimer Disease/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Serotonin/metabolism , Disease Models, Animal , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/drug effects , Neurons/metabolism , Neurons/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology
4.
J Neurophysiol ; 132(1): 45-53, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38810366

ABSTRACT

Psilocybin is a serotonergic psychedelic believed to have therapeutic potential for neuropsychiatric conditions. Despite well-documented prevalence of perceptual alterations, hallucinations, and synesthesia associated with psychedelic experiences, little is known about how psilocybin affects sensory cortex or alters the activity of neurons in awake animals. To investigate, we conducted two-photon imaging experiments in auditory cortex of awake mice and collected video of free-roaming mouse behavior, both at baseline and during psilocybin treatment. In comparison with pre-dose neural activity, a 2 mg/kg ip dose of psilocybin initially increased the amplitude of neural responses to sound. Thirty minutes post-dose, behavioral activity and neural response amplitudes decreased, yet functional connectivity increased. In contrast, control mice given intraperitoneal saline injections showed no significant changes in either neural or behavioral activity across conditions. Notably, neuronal stimulus selectivity remained stable during psilocybin treatment, for both tonotopic cortical maps and single-cell pure-tone frequency tuning curves. Our results mirror similar findings regarding the effects of serotonergic psychedelics in visual cortex and suggest that psilocybin modulates the balance of intrinsic versus stimulus-driven influences on neural activity in auditory cortex.NEW & NOTEWORTHY Recent studies have shown promising therapeutic potential for psychedelics in treating neuropsychiatric conditions. Musical experience during psilocybin-assisted therapy is predictive of treatment outcome, yet little is known about how psilocybin affects auditory processing. Here, we conducted two-photon imaging experiments in auditory cortex of awake mice that received a dose of psilocybin. Our results suggest that psilocybin modulates the roles of intrinsic neural activity versus stimulus-driven influences on auditory perception.


Subject(s)
Auditory Cortex , Hallucinogens , Psilocybin , Animals , Auditory Cortex/drug effects , Auditory Cortex/physiology , Mice , Psilocybin/pharmacology , Psilocybin/administration & dosage , Hallucinogens/pharmacology , Hallucinogens/administration & dosage , Male , Mice, Inbred C57BL , Neurons/drug effects , Neurons/physiology , Auditory Perception/drug effects , Auditory Perception/physiology , Acoustic Stimulation
5.
medRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562841

ABSTRACT

Genome-wide association studies (GWASs) may help inform treatments for infertility, whose causes remain unknown in many cases. Here we present GWAS meta-analyses across six cohorts for male and female infertility in up to 41,200 cases and 687,005 controls. We identified 21 genetic risk loci for infertility (P≤5E-08), of which 12 have not been reported for any reproductive condition. We found positive genetic correlations between endometriosis and all-cause female infertility (rg=0.585, P=8.98E-14), and between polycystic ovary syndrome and anovulatory infertility (rg=0.403, P=2.16E-03). The evolutionary persistence of female infertility-risk alleles in EBAG9 may be explained by recent directional selection. We additionally identified up to 269 genetic loci associated with follicle-stimulating hormone (FSH), luteinising hormone, oestradiol, and testosterone through sex-specific GWAS meta-analyses (N=6,095-246,862). While hormone-associated variants near FSHB and ARL14EP colocalised with signals for anovulatory infertility, we found no rg between female infertility and reproductive hormones (P>0.05). Exome sequencing analyses in the UK Biobank (N=197,340) revealed that women carrying testosterone-lowering rare variants in GPC2 were at higher risk of infertility (OR=2.63, P=1.25E-03). Taken together, our results suggest that while individual genes associated with hormone regulation may be relevant for fertility, there is limited genetic evidence for correlation between reproductive hormones and infertility at the population level. We provide the first comprehensive view of the genetic architecture of infertility across multiple diagnostic criteria in men and women, and characterise its relationship to other health conditions.

6.
Nat Rev Immunol ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086932

ABSTRACT

The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.

7.
Brain Inform ; 10(1): 34, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052917

ABSTRACT

Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.

8.
Nature ; 620(7975): 881-889, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37558878

ABSTRACT

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.


Subject(s)
Autoimmune Diseases , Central Nervous System , Dendritic Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Lactic Acid , Humans , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/prevention & control , Autoimmunity , Central Nervous System/cytology , Central Nervous System/immunology , Central Nervous System/pathology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lactic Acid/metabolism , Probiotics/therapeutic use , Reactive Oxygen Species/metabolism , T-Lymphocytes/immunology , Feedback, Physiological , Lactase/genetics , Lactase/metabolism , Single-Cell Analysis
9.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37261917

ABSTRACT

Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.


Subject(s)
Glucose , Hypoglycemia , Animals , Mice , Anoctamins , Blood Glucose , Glucose/pharmacology , Hypoglycemia/genetics , Hypothalamus/metabolism , Neurons/metabolism , Ventromedial Hypothalamic Nucleus/metabolism
10.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162964

ABSTRACT

Repetition plasticity is a ubiquitous property of sensory systems in which repetitive sensation causes either a decrease ("repetition suppression", i.e. "adaptation") or increase ("repetition enhancement", i.e. "facilitation") in the amplitude of neural responses. Timescales of repetition plasticity for sensory neurons typically span milliseconds to tens of seconds, with longer durations for cortical vs subcortical regions. Here, we used 2-photon (2P) imaging to study repetition plasticity in mouse primary auditory cortex (A1) layer 2/3 (L2/3) during the presentation of spectrotemporally randomized pure-tone frequencies. Our study revealed subpopulations of neurons with repetition plasticity for equiprobable frequencies spaced minutes apart over a 20-minute period. We found both repetition suppression and enhancement in individual neurons and on average across populations. Each neuron tended to show repetition plasticity for 1-2 pure-tone frequencies near the neuron's best frequency. Moreover, we found correlated changes in neural response amplitude and latency across stimulus repetitions. Together, our results highlight cortical specialization for pattern recognition over long timescales in complex acoustic sequences.

11.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Article in English | MEDLINE | ID: mdl-37119330

ABSTRACT

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Spastic Paraplegia, Hereditary , Animals , Humans , Spastic Paraplegia, Hereditary/drug therapy , Spastic Paraplegia, Hereditary/genetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Zebrafish , Mutation , Motor Neurons , Receptors, Autocrine Motility Factor/genetics
12.
Nat Med ; 28(12): 2537-2546, 2022 12.
Article in English | MEDLINE | ID: mdl-36536256

ABSTRACT

Serotonin reuptake inhibitors and receptor agonists are used to treat obesity, anxiety and depression. Here we studied the role of the serotonin 2C receptor (5-HT2CR) in weight regulation and behavior. Using exome sequencing of 2,548 people with severe obesity and 1,117 control individuals without obesity, we identified 13 rare variants in the gene encoding 5-HT2CR (HTR2C) in 19 unrelated people (3 males and 16 females). Eleven variants caused a loss of function in HEK293 cells. All people who carried variants had hyperphagia and some degree of maladaptive behavior. Knock-in male mice harboring a human loss-of-function HTR2C variant developed obesity and reduced social exploratory behavior; female mice heterozygous for the same variant showed similar deficits with reduced severity. Using the 5-HT2CR agonist lorcaserin, we found that depolarization of appetite-suppressing proopiomelanocortin neurons was impaired in knock-in mice. In conclusion, we demonstrate that 5-HT2CR is involved in the regulation of human appetite, weight and behavior. Our findings suggest that melanocortin receptor agonists might be effective in treating severe obesity in individuals carrying HTR2C variants. We suggest that HTR2C should be included in diagnostic gene panels for severe childhood-onset obesity.


Subject(s)
Obesity, Morbid , Receptor, Serotonin, 5-HT2C , Animals , Child , Female , Humans , Male , Mice , HEK293 Cells , Obesity/genetics , Receptor, Serotonin, 5-HT2C/genetics , Serotonin , Serotonin 5-HT2 Receptor Agonists/pharmacology , Adaptation, Psychological
13.
Cell Biosci ; 12(1): 170, 2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36210455

ABSTRACT

BACKGROUND: Pro-opiomelanocortin (POMC) neurons play a sexually dimorphic role in body weight and glucose balance. However, the mechanisms for the sex differences in POMC neuron functions are not fully understood. RESULTS: We detected small conductance calcium-activated potassium (SK) current in POMC neurons. Secondary analysis of published single-cell RNA-Seq data showed that POMC neurons abundantly express SK3, one SK channel subunit. To test whether SK3 in POMC neurons regulates POMC neuron functions on energy and glucose homeostasis, we used a Cre-loxP strategy to delete SK3 specifically from mature POMC neurons. POMC-specific deletion of SK3 did not affect body weight in either male or female mice. Interestingly, male mutant mice showed not only decreased food intake but also decreased physical activity, resulting in unchanged body weight. Further, POMC-specific SK3 deficiency impaired glucose balance specifically in female mice but not in male mice. Finally, no sex differences were detected in the expression of SK3 and SK current in total POMC neurons. However, we found higher SK current but lower SK3 positive neuron population in male POMC neurons co-expressing estrogen receptor α (ERα) compared to that in females. CONCLUSION: These results revealed a sexually dimorphic role of SK3 in POMC neurons in both energy and glucose homeostasis independent of body weight control, which was associated with the sex difference of SK current in a subpopulation of POMC + ERα + neurons.

14.
Acta Neuropathol ; 144(5): 987-1003, 2022 11.
Article in English | MEDLINE | ID: mdl-36112223

ABSTRACT

Multiple sclerosis (MS) is a multifocal and progressive inflammatory disease of the central nervous system (CNS). However, the compartmentalized pathology of the disease affecting various anatomical regions including gray and white matter and lack of appropriate disease models impede understanding of the disease. Utilizing single-nucleus RNA-sequencing and multiplex spatial RNA mapping, we generated an integrated transcriptomic map comprising leukocortical, cerebellar and spinal cord areas in normal and MS tissues that captures regional subtype diversity of various cell types with an emphasis on astrocytes and oligodendrocytes. While we found strong cross-regional diversity among glial subtypes in control tissue, regional signatures become more obscure in MS. This suggests that patterns of transcriptomic changes in MS are shared across regions and converge on specific pathways, especially those regulating cellular stress and immune activation. In addition, we found evidence that a subtype of white matter oligodendrocytes appearing across all three CNS regions adopt pro-remyelinating gene signatures in MS. In summary, our data suggest that cross-regional transcriptomic glial signatures overlap in MS, with different reactive glial cell types capable of either exacerbating or ameliorating pathology.


Subject(s)
Multiple Sclerosis , White Matter , Astrocytes/pathology , Humans , Multiple Sclerosis/pathology , Neuroglia/pathology , Oligodendroglia/metabolism , RNA/metabolism , White Matter/pathology
15.
Front Endocrinol (Lausanne) ; 13: 889122, 2022.
Article in English | MEDLINE | ID: mdl-36120438

ABSTRACT

Pro-opiomelanocortin (POMC) neurons are important for the regulation of body weight and glucose balance. The inhibitory tone to POMC neurons is mediated primarily by the GABA receptors. However, the detailed mechanisms and functions of GABA receptors are not well understood. The α5 subunit of GABAA receptor, Gabra5, is reported to regulate feeding, and we found that Gabra5 is highly expressed in POMC neurons. To explore the function of Gabra5 in POMC neurons, we knocked down Gabra5 specifically from mature hypothalamic POMC neurons using the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 strategy. This POMC-specific knock-down of Gabra5 did not affect body weight or food intake in either male or female mice. Interestingly, the loss of Gabra5 caused significant increases in the firing frequency and resting membrane potential, and a decrease in the amplitude of the miniature inhibitory postsynaptic current (mIPSC) in male POMC neurons. However, the loss of Gabra5 only modestly decreased the frequency of mIPSC in female POMC neurons. Consistently, POMC-specific knock-down of Gabra5 significantly improved glucose tolerance in male mice but not in female mice. These results revealed a sexually dimorphic role of Gabra5 in POMC neuron activity and glucose balance, independent of body weight control.


Subject(s)
Glucose , Pro-Opiomelanocortin , Animals , Body Weight , Female , Male , Mice , Mice, Transgenic , Neurons/metabolism , Pro-Opiomelanocortin/genetics , Receptors, GABA-A
16.
Cell Rep ; 39(9): 110878, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649366

ABSTRACT

Cortical processing of task-relevant information enables recognition of behaviorally meaningful sensory events. It is unclear how task-related information is represented within cortical networks by the activity of individual neurons and their functional interactions. Here, we use two-photon imaging to record neuronal activity from the primary auditory cortex of mice during a pure-tone discrimination task. We find that a subset of neurons transiently encode sensory information used to inform behavioral choice. Using Granger causality analysis, we show that these neurons form functional networks in which information transmits sequentially. Network structures differ for target versus non-target tones, encode behavioral choice, and differ between correct versus incorrect behavioral choices. Correct behavioral choices are associated with shorter communication timescales, larger functional correlations, and greater information redundancy. In summary, specialized neurons in primary auditory cortex integrate task-related information and form functional networks whose structures encode both sensory input and behavioral choice.


Subject(s)
Auditory Cortex , Animals , Auditory Cortex/physiology , Mice , Neurons/physiology
17.
ACS Chem Biol ; 16(11): 2185-2192, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34515462

ABSTRACT

Bromodomain-containing proteins frequently reside in multisubunit chromatin complexes with tissue or cell state-specific compositions. Recent studies have revealed tumor-specific dependencies on the BAF complex bromodomain subunit BRD9 that are a result of recurrent mutations afflicting the structure and composition of associated complex members. To enable the study of ligand engaged complex assemblies, we established a chemoproteomics approach using a functionalized derivative of the BRD9 ligand BI-9564 as an affinity matrix. Unexpectedly, in addition to known interactions with BRD9 and associated BAF complex proteins, we identify a previously unreported interaction with members of the NuA4 complex through the bromodomain-containing subunit BRD8. We apply this finding, alongside a homology-model-guided design, to develop chemical biology approaches for the study of BRD8 inhibition and to arrive at first-in-class selective and cellularly active probes for BRD8. These tools will empower further pharmacological studies of BRD9 and BRD8 within respective BAF and NuA4 complexes.


Subject(s)
Benzylamines/pharmacology , Naphthyridines/pharmacology , Proteomics/methods , Transcription Factors/metabolism , Cell Line, Tumor , Cell Lineage , DNA Repair , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/physiology , Humans , Ligands , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , Protein Subunits , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcriptome
18.
Brain ; 144(3): 769-780, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33764426

ABSTRACT

Membrane trafficking is a complex, essential process in eukaryotic cells responsible for protein transport and processing. Deficiencies in vacuolar protein sorting (VPS) proteins, key regulators of trafficking, cause abnormal intracellular segregation of macromolecules and organelles and are linked to human disease. VPS proteins function as part of complexes such as the homotypic fusion and vacuole protein sorting (HOPS) tethering complex, composed of VPS11, VPS16, VPS18, VPS33A, VPS39 and VPS41. The HOPS-specific subunit VPS41 has been reported to promote viability of dopaminergic neurons in Parkinson's disease but to date has not been linked to human disease. Here, we describe five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function.


Subject(s)
Cerebellar Ataxia/genetics , Genetic Predisposition to Disease/genetics , Neurodevelopmental Disorders/genetics , Protein Transport/genetics , Vesicular Transport Proteins/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , Female , Genetic Variation , Humans , Male , Pedigree , Young Adult , Zebrafish
19.
Addict Biol ; 26(2): e12895, 2021 03.
Article in English | MEDLINE | ID: mdl-32187805

ABSTRACT

Opioid use by pregnant women is an understudied consequence associated with the opioid epidemic, resulting in a rise in the incidence of neonatal opioid withdrawal syndrome (NOWS) and lifelong neurobehavioral deficits that result from perinatal opioid exposure. There are few preclinical models that accurately recapitulate human perinatal drug exposure and few focus on fentanyl, a potent synthetic opioid that is a leading driver of the opioid epidemic. To investigate the consequences of perinatal opioid exposure, we administered fentanyl to mouse dams in their drinking water throughout gestation and until litters were weaned at postnatal day (PD) 21. Fentanyl-exposed dams delivered smaller litters and had higher litter mortality rates compared with controls. Metrics of maternal care behavior were not affected by the treatment, nor were there differences in dams' weight or liquid consumption throughout gestation and 21 days postpartum. Twenty-four hours after weaning and drug cessation, perinatal fentanyl-exposed mice exhibited signs of spontaneous somatic withdrawal behavior and sex-specific weight fluctuations that normalized in adulthood. At adolescence (PD 35), they displayed elevated anxiety-like behaviors and decreased grooming, assayed in the elevated plus maze and sucrose splash tests. Finally, by adulthood (PD 55), they displayed impaired performance in a two-tone auditory discrimination task. Collectively, our findings suggest that perinatal fentanyl-exposed mice exhibit somatic withdrawal behavior and change into early adulthood reminiscent of humans born with NOWS.


Subject(s)
Behavior, Animal/drug effects , Fentanyl/pharmacology , Narcotics/pharmacology , Neonatal Abstinence Syndrome/pathology , Prenatal Exposure Delayed Effects/pathology , Animals , Anxiety/pathology , Female , Litter Size , Maternal Behavior/drug effects , Mice , Pregnancy
20.
Int J Pediatr ; 2020: 7546954, 2020.
Article in English | MEDLINE | ID: mdl-32695189

ABSTRACT

BACKGROUND: Infections transmitted from mother to child (MTCT) during pregnancy, childbirth, and breastfeeding contribute significantly to the high infant and childhood morbidity and mortality in sub-Saharan African countries. The most significant and preventable of these include HIV, syphilis, and rubella. To achieve elimination, mothers need to be aware of and to understand effective preventive measures against these infections. Lack of comprehensive knowledge on transmission and prevention of MTCT infections is one of the factors hindering achievement of the elimination goals for these infections. The aim of this study was to assess the knowledge of HIV, syphilis, rubella, and associated factors among mothers in the Kilimanjaro region of Tanzania. METHODS: We conducted a community-based cross-sectional study in three districts of the Kilimanjaro region from September to October 2016. The study involved mothers with children up to five years of age. Data collection involved the use of a questionnaire, administered by face-to-face interviews. Logistic regression analysis was used to assess predictors of mothers' knowledge on MTCT infections. RESULTS: A total of 618 mothers were recruited, with a mean age of 29.6 (SD 7.6) years. The overall knowledge on MTCT infections was low. The highest level of knowledge on MTCT infections was regarding HIV (89.2%). Fewer mothers had knowledge of syphilis (27.8%). Rubella was the least known; only 12% of mothers were aware of rubella infection. District of residence and having knowledge of syphilis were predictors for rubella knowledge, while for syphilis knowledge, significant predictors were age group, occupation, and those having knowledge on HIV and rubella. Predictors for HIV knowledge were residential district, having a mobile phone, and those having knowledge of syphilis and rubella. CONCLUSIONS: This study confirmed that mothers have low overall knowledge on MTCT infections. To achieve the MTCT elimination goals, targeted interventions to improve knowledge among women of childbearing age are recommended.

SELECTION OF CITATIONS
SEARCH DETAIL
...