Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38514392

ABSTRACT

OBJECTIVE: Chronic inflammatory diseases, like Systemic Lupus Erythematosus (SLE), carry an increased risk for atherosclerosis and cardiovascular events, accompanied by impairment of atheroprotective properties of high-density lipoprotein (HDL). In SLE, serum BAFF (B cell-activating factor), a cytokine implicated in disease progression, has been correlated with subclinical atherosclerosis. We investigated the impact of treatment with belimumab -an anti-BAFF monoclonal antibody- on HDL atheroprotective properties and composition in SLE patients. METHODS: Serum samples were collected from 35 SLE patients with active disease despite conventional therapy, before and after 6-month add-on treatment with belimumab, and 26 matched healthy individuals. We measured cholesterol efflux and antioxidant capacities, paraoxonase-1 activity, serum amyloid A1, myeloperoxidase and lipid peroxidation product levels of HDL. LC-MS/MS was performed to analyze the HDL lipidome. RESULTS: Following treatment with belimumab, cholesterol efflux and antioxidant capacities of HDL were significantly increased in SLE patients and restored to levels of controls. HDL-associated paraoxonase-1 activity was also increased, whereas lipid peroxidation products were decreased following treatment. HDL cholesterol efflux and antioxidant capacities correlated negatively with the disease activity. Changes were noted in the HDL lipidome of SLE patients following belimumab treatment, as well as between SLE patients and healthy individuals, and specific changes in lipid species correlated with functional parameters of HDL. CONCLUSIONS: HDL of SLE patients with active disease displays impaired atheroprotective properties accompanied by distinct lipidomic signature compared with controls. Belimumab treatment may improve the HDL atheroprotective properties and modify the HDL lipidomic signature in SLE patients, thus potentially mitigating atherosclerosis development.

2.
Immunotherapy ; 11(9): 813-829, 2019 06.
Article in English | MEDLINE | ID: mdl-31120393

ABSTRACT

Metabolism is a critical immune regulator under physiologic and pathologic conditions. Culminating evidence has disentangled the contribution of distinct metabolic pathways, namely glucolysis, pentose phosphate, fatty acid oxidation, glutaminolysis, Krebs cycle and oxidative phosphorylation, in modulating innate and adaptive immune cells based on their activation/differentiation state. Metabolic aberrations and changes in the intracellular levels of specific metabolites are linked to the inflammatory phenotype of immune cells implicated in autoimmune disorders such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and diabetes. Notably, targeting metabolism such as the mTOR by rapamycin, hexokinase by 2-deoxy-D-glucose, AMP-activated protein kinase by metformin, may be used to ameliorate autoimmune inflammation. Accordingly, research in immunometabolism is expected to offer novel opportunities for monitoring and treating immune-mediated diseases.


Subject(s)
Autoimmune Diseases/immunology , Glucose/immunology , Immune System/immunology , Metabolic Networks and Pathways/immunology , Animals , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Glucose/metabolism , Humans , Immune System/cytology , Immune System/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Models, Immunological , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology
3.
Cell Rep ; 25(4): 921-933.e5, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30355498

ABSTRACT

Interferon α (IFNα) is a prompt and efficient orchestrator of host defense against nucleic acids but upon chronicity becomes a potent mediator of autoimmunity. Sustained IFNα signaling is linked to pathogenesis of systemic lupus erythematosus (SLE), an incurable autoimmune disease characterized by aberrant self-DNA sensing that culminates in anti-DNA autoantibody-mediated pathology. IFNα instructs monocytes differentiation into autoinflammatory dendritic cells (DCs) than potentiates the survival and expansion of autoreactive lymphocytes, but the molecular mechanism bridging sterile IFNα-danger alarm with adaptive response against self-DNA remains elusive. Herein, we demonstrate IFNα-mediated deregulation of mitochondrial metabolism and impairment of autophagic degradation, leading to cytosolic accumulation of mtDNA that is sensed via stimulator of interferon genes (STING) to promote induction of autoinflammatory DCs. Identification of mtDNA as a cell-autonomous enhancer of IFNα signaling underlines the significance of efficient mitochondrial recycling in the maintenance of peripheral tolerance. Antioxidant treatment and metabolic rescue of autolysosomal degradation emerge as drug targets in SLE and other IFNα-related pathologies.


Subject(s)
Autophagy/drug effects , DNA, Mitochondrial/metabolism , Interferon-alpha/pharmacology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Membrane Proteins/metabolism , Monocytes/immunology , Adenosine Triphosphate/metabolism , Adolescent , Adult , Aged , Autophagosomes/drug effects , Autophagosomes/metabolism , Humans , Hydrogen-Ion Concentration , Inflammation/pathology , Lipopolysaccharide Receptors/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Middle Aged , Mitochondria/drug effects , Mitochondria/metabolism , Monocytes/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...