Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Rev ; 124(13): 8233-8306, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38885684

ABSTRACT

Interest in energy-to-X and X-to-energy (where X represents green hydrogen, carbon-based fuels, or ammonia) technologies has expanded the field of electrochemical conversion and storage. Solid oxide electrochemical cells (SOCs) are among the most promising technologies for these processes. Their unmatched conversion efficiencies result from favorable thermodynamics and kinetics at elevated operating temperatures (400-900 °C). These solid-state electrochemical systems exhibit flexibility in reversible operation between fuel cell and electrolysis modes and can efficiently utilize a variety of fuels. However, electrocatalytic materials at SOC electrodes remain nonoptimal for facilitating reversible operation and fuel flexibility. In this Review, we explore the diverse range of electrocatalytic materials utilized in oxygen-ion-conducting SOCs (O-SOCs) and proton-conducting SOCs (H-SOCs). We examine their electrochemical activity as a function of composition and structure across different electrochemical reactions to highlight characteristics that lead to optimal catalytic performance. Catalyst deactivation mechanisms under different operating conditions are discussed to assess the bottlenecks in performance. We conclude by providing guidelines for evaluating the electrochemical performance of electrode catalysts in SOCs and for designing effective catalysts to achieve flexibility in fuel usage and mode of operation.

2.
Nat Commun ; 12(1): 4895, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34385446

ABSTRACT

Atmospheric NO2 is of great concern due to its adverse effects on human health and the environment, motivating research on NO2 detection and remediation. Existing low-cost room-temperature NO2 sensors often suffer from low sensitivity at the ppb level or long recovery times, reflecting the trade-off between sensor response and recovery time. Here, we report an atomically dispersed metal ion strategy to address it. We discover that bimetallic PbCdSe quantum dot (QD) gels containing atomically dispersed Pb ionic sites achieve the optimal combination of strong sensor response and fast recovery, leading to a high-performance room-temperature p-type semiconductor NO2 sensor as characterized by a combination of ultra-low limit of detection, high sensitivity and stability, fast response and recovery. With the help of theoretical calculations, we reveal the high performance of the PbCdSe QD gel arises from the unique tuning effects of Pb ionic sites on NO2 binding at their neighboring Cd sites.

3.
JACS Au ; 1(12): 2224-2241, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34977894

ABSTRACT

Compositionally versatile, nonstoichiometric, mixed ionic-electronic conducting metal oxides of the form A n+1B n O3n+1 (n = 1 → ∞; A = rare-earth-/alkaline-earth-metal cation; B = transition-metal (TM) cation) remain a highly attractive class of electrocatalysts for catalyzing the energy-intensive oxygen evolution reaction (OER). The current design strategies for describing their OER activities are largely derived assuming a static, unchanged view of their surfaces, despite reports of dynamic structural changes to 3d TM-based perovskites during OER. Herein, through variations in the A- and B-site compositions of A n+1B n O3n+1 oxides (n = 1 (A2BO4) or n = ∞ (ABO3); A = La, Sr, Ca; B = Mn, Fe, Co, Ni), we show that, in the absence of electrolyte impurities, surface restructuring is universally the source of high OER activity in these oxides and is dependent on the initial oxide composition. Oxide surface restructuring is induced by irreversible A-site cation dissolution, resulting in in situ formation of a TM oxyhydroxide shell on top of the parent oxide core that serves as the active surface for OER. The rate of surface restructuring is found to depend on (i) composition of A-site cations, with alkaline-earth-metal cations dominating lanthanide cation dissolution, (ii) oxide crystal phase, with n = 1 A2BO4 oxides exhibiting higher rates of A-site dissolution in comparison to n = ∞ ABO3 perovskites, (iii) lattice strain in the oxide induced by mixed rare-earth- and alkaline-earth-metal cations in the A-site, and (iv) oxide reducibility. Among the in situ generated 3d TM oxyhydroxide structures from A n+1B n O3n+1 oxides, Co-based structures are characterized by superior OER activity and stability, even in comparison to as-synthesized Co-oxyhydroxide, pointing to the generation of high active surface area structures through oxide restructuring. These insights are critical toward the development of revised design criteria to include surface dynamics for effectively describing the OER activity of nonstoichiometric mixed-metal oxides.

4.
Annu Rev Chem Biomol Eng ; 10: 85-104, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31173521

ABSTRACT

Dwindling fossil fuel resources and substantial release of CO2 from their processing have increased the appeal to use biomass as a sustainable platform for synthesis of chemicals and fuels. Steps toward this will require selective upgrading of biomass to suitable intermediates. Traditionally, biomass upgrading has involved thermochemical processes that require excessive amounts of petrochemical-derived H2 and suffer from poor product selectivity. Electrochemical routes have emerged as promising alternatives because of (a) the replacement of petrochemical-derived H2 by protons generated in situ, (b) mild operating temperatures and pressures, and (c) the use of electrode potential to tune reaction rates and product selectivity. In this review, we highlight the advances in the electrocatalytic hydrogenation and oxidation of biomass-derived platform molecules. The effects of important reaction parameters on electrochemical efficiency and catalytic activity/selectivity are thoroughly discussed. We conclude by summarizing current challenges and discussing future research directions.


Subject(s)
Biomass , Electrochemical Techniques/methods , Oxygen/chemistry , Catalysis , Hydrogenation , Oxidation-Reduction , Protons
5.
J Am Chem Soc ; 140(26): 8128-8137, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29847727

ABSTRACT

Oxygen electrocatalysis plays a critical role in the efficiency of important energy conversion and storage systems. While many efforts have focused on designing efficient electrocatalysts for these processes, optimal catalysts that are inexpensive, active, selective, and stable are still being searched. Nonstoichiometric, mixed-metal oxides present a promising group of electrocatalysts for these processes due to the versatility of the surface composition and fast oxygen conducting properties. Herein, we demonstrate, using a combination of theoretical and experimental studies, the ability to develop design principles that can be used to engineer oxygen electrocatalysis activity of layered, mixed ionic-electronic conducting Ruddlesden-Popper (R-P) oxides. We show that a density function theory (DFT) derived descriptor, O2 binding energy on a surface oxygen vacancy, can be effective in identifying efficient R-P oxide structures for oxygen reduction reaction (ORR). Using a controlled synthesis method, well-defined nanostructures of R-P oxides are obtained, which along with thermochemical and electrochemical activity studies are used to validate the design principles. This has led to the identification of a highly active ORR electrocatalyst, nanostructured Co-doped lanthanum nickelate oxide, which when incorporated in solid oxide fuel cell cathodes significantly enhances the performance at intermediate temperatures (∼550 °C), while maintaining long-term stability. The reported findings demonstrate the effectiveness of the developed design principles to engineer mixed ionic-electronic conducting oxides for efficient oxygen electrocatalysis, and the potential of nanostructured Co-doped lanthanum nickelate oxides as promising catalysts for oxygen electrocatalysis.

6.
Angew Chem Int Ed Engl ; 56(23): 6594-6598, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28471048

ABSTRACT

Recent efforts to design selective catalysts for multi-step reactions, such as hydrodeoxygenation (HDO), have emphasized the preparation of active sites at the interface between two materials having different properties. However, achieving precise control over interfacial properties, and thus reaction selectivity, has remained a challenge. Here, we encapsulated Pd nanoparticles (NPs) with TiO2 films of regulated porosity to gain a new level of control over catalyst performance, resulting in essentially 100 % HDO selectivity for two biomass-derived alcohols. This catalyst also showed exceptional reaction specificity in HDO of furfural and m-cresol. In addition to improving HDO activity by maximizing the interfacial contact between the metal and metal oxide sites, encapsulation by the nanoporous oxide film provided a significant selectivity boost by restricting the accessible conformations of aromatics on the surface.

7.
Proc Natl Acad Sci U S A ; 109(25): 9727-32, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22665778

ABSTRACT

Isomerization of sugars is used in a variety of industrially relevant processes and in glycolysis. Here, we show that hydrophobic zeolite beta with framework tin or titanium Lewis acid centers isomerizes sugars, e.g., glucose, via reaction pathways that are analogous to those of metalloenzymes. Specifically, experimental and theoretical investigations reveal that glucose partitions into the zeolite in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center, isomerizes into the acyclic form of fructose, and finally ring closes to yield the furanose product. The zeolite catalysts provide processing advantages over metalloenzymes such as an ability to work at higher temperatures and in acidic conditions that allow for the isomerization reaction to be coupled with other important conversions.

8.
J Chem Phys ; 132(11): 111101, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20331272

ABSTRACT

We have used X-ray absorption spectroscopy and quantum chemical density functional theory calculations to identify critical features in the electronic structure of different sites in alloys that govern the local chemical reactivity. The measurements led to a simple model relating local geometric features of a site in an alloy to its electronic structure and chemical reactivity. The central feature of the model is that the formation of alloys does not lead to significant charge transfer between the constituent metal elements in the alloys, and that the local electronic structure and chemical reactivity can be predicted based on physical characteristics of constituent metal elements in their unalloyed form.

9.
J Am Chem Soc ; 131(7): 2747-54, 2009 Feb 25.
Article in English | MEDLINE | ID: mdl-19199629

ABSTRACT

Identifying structure-performance relationships is critical for the discovery and optimization of heterogeneous catalysts. Recent theoretical contributions have led to the development of d-band theory, which relates the calculated electronic structure of a metal to its chemical and catalytic activity. While there are many contributions where quantum-chemical calculations have been utilized to validate the d-band theory, experimental examples relating the electronic structures of commercially relevant nonmodel catalysts to their performance are lacking. We show that even small changes in the near-Fermi-level electronic structures of nonmodel supported catalysts, induced by the formation of surface alloys, can be measured and related to the chemical and catalytic performance of these materials. We demonstrate that critical shifts in the d-band center in alloys are related to the formation of new electronic states in response to alloying rather than to charge redistribution among constitutive alloy elements, i.e., the number of d holes and d electrons localized on the constitutive alloy elements is constant. On the basis of the presented results, we provide a simple, physically transparent framework for predicting shifts in the d-band center in response to alloying and relating these shifts to the chemical characteristics of the alloys.

10.
J Am Chem Soc ; 128(35): 11354-5, 2006 Sep 06.
Article in English | MEDLINE | ID: mdl-16939249

ABSTRACT

Steam reforming is a process where a hydrocarbon is converted into hydrogen and oxygenated carbon species. Ni is often used as catalyst for the reaction. Long term stability of steam reforming catalysts is governed by their ability to selectively oxidize C atoms while preventing C-C bond formation. In this communication we demonstrate that C atom chemistry over Ni surfaces can be controlled by surface alloying. We show that bimetallic Sn/Ni catalyst is much more carbon-tolerant that monometallic Ni. The main reason for this is that Sn alloying results in dramatically lower rates of C-C bond formation as compared to C-oxidation. The bimetallic catalyst was identified in quantum computational studies of the underlying atomic-scale phenomena that govern C atom surface chemistry. The catalysts were also characterized with various electron- and X-ray-based microscopies and spectroscopies.

SELECTION OF CITATIONS
SEARCH DETAIL
...