Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 5175, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198355

ABSTRACT

An improved understanding of changes in flood hazard and the underlying driving mechanisms is critical for predicting future changes for better adaptation strategies. While recent increases in flooding across the world have been partly attributed to a range of atmospheric or landscape drivers, one often-forgotten driver of changes in flood properties is the variability of river conveyance capacity. This paper proposes a new framework for connecting flood changes to longitudinal variability in river conveyance, precipitation climatology, flows and sediment connectivity. We present a first step, based on a regional analysis, towards a longer-term research effort that is required to decipher the circular causality between floods and rivers. The results show how this system of interacting units in the atmospheric, hydrologic and geomorphological realm function as a nonlinear filter that fundamentally alters the frequency of flood events. To revise and refine our estimation of future flood risk, this work highlights that multidriver attribution studies are needed, that include boundary conditions such as underlying climate, water and sediment connectivity, and explicit estimations of river conveyance properties.

2.
Sci Total Environ ; 592: 262-276, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28319713

ABSTRACT

Even though rare, mega-fires raging during very dry and windy conditions, record catastrophic impacts on infrastructure, the environment and human life, as well as extremely high suppression and rehabilitation costs. Apart from the direct consequences, mega-fires induce long-term effects in the geomorphological and hydrological processes, influencing environmental factors that in turn can affect the occurrence of other natural hazards, such as floods and mass movement phenomena. This work focuses on the forest fire of 2007 in Peloponnese, Greece that to date corresponds to the largest fire in the country's record that burnt 1773km2, causing 78 fatalities and very significant damages in property and infrastructure. Specifically, this work examines the occurrence of flood and mass movement phenomena, before and after this mega-fire and analyses different influencing factors to investigate the degree to which the 2007 fire and/or other parameters have affected their frequency. Observational evidence based on several data sources collected during the period 1989-2016 show that the 2007 fire has contributed to an increase of average flood and mass movement events frequency by approximately 3.3 and 5.6 times respectively. Fire affected areas record a substantial increase in the occurrence of both phenomena, presenting a noticeably stronger increase compared to neighbouring areas that have not been affected. Examination of the monthly occurrence of events showed an increase even in months of the year were rainfall intensity presented decreasing trends. Although no major land use changes has been identified and chlorophyll is shown to recover 2years after the fire incident, differences on the type of vegetation as tall forest has been substituted with lower vegetation are considered significant drivers for the observed increase in flood and mass movement frequency in the fire affected areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...