Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 126(41): 8166-8176, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36198175

ABSTRACT

MS2 bacteriophage is often used as a model for evaluating pathogenic viruses' behavior in aqueous solution. However, the questions of the virus surface's hydrophilic/hydrophobic balance, the charge distribution, and the binding mechanism are open. Using the dynamic light scattering method and laser Doppler electrophoresis, the hydrodynamic diameter and the ζ-potential of the virus particles were measured at their concentration of 5 × 1011 particles per mL and ionic strength 0.03 M. The values were found to be 30 nm and -29 or -34 mV (by Smoluchowski or Ohshima approximations), respectively. The MS2 bacteriophage surface was also investigated using a series of acid-base indicator dyes of various charge type, size, and structure. Their spectral and acid-base properties (pKa) are very sensitive to the microenvironment in aqueous solution, including containing nanoparticles. The electrostatic potential of the surface Ψ was estimated using the common formula: Ψ = 59 × (pKai - pKa) in mV at 25 °C. The Ψ values were -50 and +10 mV, respectively, which indicate the "mosaic" way of the charge distribution on the surface. These data are in good agreement with the obtained ζ-potential values and provide even more information about the virus surface. It was found that the surface of the MS2 virus is hydrophilic in solution in contrast to the commonly accepted hypothesis of the hydrophobicity of virus particles. No hydrophobic interactions between various molecular probes and the capsid were observed.


Subject(s)
Molecular Probes , Nanoparticles , Static Electricity , Hydrophobic and Hydrophilic Interactions , Levivirus/chemistry , Coloring Agents , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...