Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 88(10): 1608-1621, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38105028

ABSTRACT

Bronchial asthma (BA) is a heterogeneous chronic inflammatory disease of the respiratory tract. Allergic (atopic) asthma is the most common (up to 80% of cases) phenotype developing through the Th2-dependent mechanisms involving cytokines: IL-4, IL-5, IL-9, and IL-13. The genes encoding Th2-cytokines have a mosaic structure (encode exons and introns). Therefore, several mature mRNA transcripts and protein isoforms can be derived from a single mRNA precursor through alternative splicing, and they may contribute to BA pathogenesis. Analysis of the published studies and databases revealed existence of the alternative mRNA transcripts for IL-4, IL-5, and IL-13. The alternative transcripts of IL-4 and IL-5 carry open reading frames and therefore can encode functional proteins. It was shown that not only alternative mRNA transcripts exist for IL-4, but alternative protein isoforms, as well. Natural protein isoform (IL-4δ2) lacking the part encoded by exon-2 was identified. Similarly, alternative mRNA transcript with deleted exon-2 (IL-5δ2) was also identified for IL-5. In this review, we summarize current knowledge about the identified alternative mRNA transcripts and protein isoforms of Th2-cytokinins, first of all IL-4 and IL-5. We have analyzed biological properties of the alternative variants of these cytokines, their possible role in the allergic asthma pathogenesis, and considered their diagnostic and therapeutic potential.


Subject(s)
Asthma , Cytokines , Humans , Cytokines/genetics , Cytokines/metabolism , Alternative Splicing , Interleukin-4/genetics , Interleukin-4/metabolism , Interleukin-5/genetics , Interleukin-5/metabolism , Interleukin-13/genetics , Interleukin-13/metabolism , Asthma/genetics , Asthma/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Th2 Cells/metabolism , Th2 Cells/pathology
2.
Allergy ; 76(9): 2840-2854, 2021 09.
Article in English | MEDLINE | ID: mdl-33837568

ABSTRACT

BACKGROUND: First vaccines for prevention of Coronavirus disease 2019 (COVID-19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti-SARS-CoV-2 effect of siRNA both in vitro and in vivo. METHODS: To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS-CoV-2 genes fused with the firefly luciferase reporter gene and SARS-CoV-2-infected cells was used. The most potent siRNA, siR-7, was modified by Locked nucleic acids (LNAs) to obtain siR-7-EM with increased stability and was formulated with the peptide dendrimer KK-46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation - siR-7-EM/KK-46. Using the Syrian Hamster model for SARS-CoV-2 infection the antiviral capacity of siR-7-EM/KK-46 complex was evaluated. RESULTS: We identified the siRNA, siR-7, targeting SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA-modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR-7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR-7-EM/KK-46 in vivo. CONCLUSIONS: Thus, we developed a therapeutic strategy for COVID-19 based on inhalation of a modified siRNA-peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID-19 patients.


Subject(s)
COVID-19 , Dendrimers , Animals , Antiviral Agents , Humans , Peptides/genetics , RNA, Small Interfering/genetics , RNA, Viral , SARS-CoV-2
3.
Heliyon ; 6(3): e03586, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32211550

ABSTRACT

Expression of interleukins and their receptors is often regulated by alternative splicing. Alternative isoform of IL-5 receptor α-chain is well studied; however, no data on functional alternative splice variants of IL-5 has been reported up today. In the present study, we describe a novel splice variant for the mouse and human IL-5. The new form was found during analysis of PCR-products amplified from different mouse lymphoid tissues with a pair of primers designed to clone full-length mIL-5 ORF. A single short isoform of mIL-5 was detected along with the canonical full-length mRNA in ConA-stimulated lymphoid cells isolated from spleen, thymus, lymph nodes and blood. It was 30-40 nt shorter, and less abundant than classical form. The sequence analysis of an additional form of mIL-5 revealed that it lacks exon-2 (δ2). Using RT-PCR with the splice-specific primers we obtained an additional evidence for δ2 form expression. To verify whether mIL-5δ2 transcript is translated into protein, the coding sequences corresponding to full and δ2 forms of mIL-5 were cloned into an expression plasmid. After transfection into the human 293T cell line, we found that the short form of mIL-5 protein is expressed in cells and secreted into the supernatant, but at the reduced level than that detected for full isoform of mIL-5. Fluorescence microscopy examination revealed a partial translocation of mIL-5δ2 into cytoplasm, whereas mIL-5 resided mostly within endoplasmic reticulum. This can explain why the level of δ2 protein expression was reduced. Using a similar set of experimental approaches, we received the evidence that the human IL-5 mRNA has the δ2 splice form (hIL-5δ2) as well. It can be firmly detected by RT-PCR in PHA-activated mononuclear cells isolated from peripheral blood of healthy persons or patients with asthma. Altogether, our results showed that the human and mouse IL-5 have an alternative mRNA splice isoform, which loses exon-2, but nevertheless is expressed at protein level. However, more comprehensive studies will be required for evaluation of IL-5δ2 expression, regulation, biological function and clinical significance.

SELECTION OF CITATIONS
SEARCH DETAIL
...