Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 20768, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26865217

ABSTRACT

The Kets, an ethnic group in the Yenisei River basin, Russia, are considered the last nomadic hunter-gatherers of Siberia, and Ket language has no transparent affiliation with any language family. We investigated connections between the Kets and Siberian and North American populations, with emphasis on the Mal'ta and Paleo-Eskimo ancient genomes, using original data from 46 unrelated samples of Kets and 42 samples of their neighboring ethnic groups (Uralic-speaking Nganasans, Enets, and Selkups). We genotyped over 130,000 autosomal SNPs, identified mitochondrial and Y-chromosomal haplogroups, and performed high-coverage genome sequencing of two Ket individuals. We established that Nganasans, Kets, Selkups, and Yukaghirs form a cluster of populations most closely related to Paleo-Eskimos in Siberia (not considering indigenous populations of Chukotka and Kamchatka). Kets are closely related to modern Selkups and to some Bronze and Iron Age populations of the Altai region, with all these groups sharing a high degree of Mal'ta ancestry. Implications of these findings for the linguistic hypothesis uniting Ket and Na-Dene languages into a language macrofamily are discussed.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Genome, Human , Inuit/genetics , Phylogeny , Polymorphism, Single Nucleotide , Chromosomes, Human, Y , Genetic Variation , Haplotypes , Human Migration , Humans , Language , Phylogeography , Siberia
2.
Biol Direct ; 11(1): 2, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26747447

ABSTRACT

BACKGROUND: The length of a protein sequence is largely determined by its function. In certain species, it may be also affected by additional factors, such as growth temperature or acidity. In 2002, it was shown that in the bacterium Escherichia coli and in the archaeon Archaeoglobus fulgidus, protein sequences with no homologs were, on average, shorter than those with homologs (BMC Evol Biol 2:20, 2002). It is now generally accepted that in bacterial and archaeal genomes the distributions of protein length are different between sequences with and without homologs. In this study, we examine this postulate by conducting a comprehensive analysis of all annotated prokaryotic genomes and by focusing on certain exceptions. RESULTS: We compared the distribution of lengths of "having homologs proteins" (HHPs) and "non-having homologs proteins" (orphans or ORFans) in all currently completely sequenced and COG-annotated prokaryotic genomes. As expected, the HHPs and ORFans have strikingly different length distributions in almost all genomes. As previously established, the HHPs, indeed are, on average, longer than the ORFans, and the length distributions for the ORFans have a relatively narrow peak, in contrast to the HHPs, whose lengths spread over a wider range of values. However, about thirty genomes do not obey these rules. Practically all genomes of Mycoplasma and Ureaplasma have atypical ORFans distributions, with the mean lengths of ORFan larger than the mean lengths of HHPs. These genera constitute over 80 % of atypical genomes. CONCLUSIONS: We confirmed on a ubiquitous set of genomes that the previous observation of HHPs and ORFans have different gene length distributions. We also showed that Mycoplasmataceae genomes have very distinctive distributions of ORFans lengths. We offer several possible biological explanations of this phenomenon, such as an adaptation to Mycoplasmataceae's ecological niche, specifically its "quiet" co-existence with host organisms, resulting in long ABC transporters.


Subject(s)
Bacterial Proteins/metabolism , Mycoplasmataceae/metabolism , Bacterial Proteins/genetics , Genome, Bacterial/genetics , Mycoplasmataceae/genetics , Open Reading Frames/genetics
3.
Drug Metab Dispos ; 32(10): 1111-20, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15269187

ABSTRACT

It is widely recognized that preclinical drug discovery can be improved via the parallel assessment of bioactivity, absorption, distribution, metabolism, excretion, and toxicity properties of molecules. High-throughput computational methods may enable such assessment at the earliest, least expensive discovery stages, such as during screening compound libraries and the hit-to-lead process. As an attempt to predict drug metabolism and toxicity, we have developed an approach for evaluation of the rate of N-dealkylation mediated by two of the most important human cytochrome P450s (P450), namely CYP3A4 and CYP2D6. We have taken a novel approach by using descriptors generated for the whole molecule, the reaction centroid, and the leaving group, and then applying neural network computations and sensitivity analysis to generate quantitative structure-metabolism relationship models. The quality of these models was assessed by using the cross-validated correlation coefficients of 0.82 for CYP3A4 and 0.79 for CYP2D6 as well as external test molecules for each enzyme. The relative performance of different neural networks was also compared, and modular neural networks with two hidden layers provided the best predictive ability. Functional dependencies between the neural network input and output variables, generalization ability, and limitations of the described approach are also discussed. These models represent an initial approach to predicting the rate of P450-mediated metabolism and may be applied and integrated with other models for P450 binding to produce a systems-based approach for predicting drug metabolism.


Subject(s)
Models, Molecular , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Quantitative Structure-Activity Relationship , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/metabolism , Dealkylation , Humans
4.
Drug Metab Dispos ; 32(10): 1183-9, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15231683

ABSTRACT

The drug development process utilizes the parallel assessment of activity at a therapeutic target as well as absorption, distribution, metabolism, excretion, and toxicity properties of molecules. The development of novel, reliable, and inexpensive computational methods for the early assessment of metabolism and toxicity is becoming increasingly an important part of this process. We have used a computational approach for the assessment of drugs and drug-like compounds which bind to the cytochromes P450 (P450s) with experimentally determined Km values. The physicochemical properties of these compounds were calculated using molecular descriptor software and then analyzed using Kohonen self-organizing maps. This approach was applied to generate a P450-specific classification of nearly 500 drug compounds. We observed statistically significant differences in the molecular properties of low Km molecules for various P450s and suggest a relationship between 33 of these compounds and their CYP3A4-inhibitory activity. A test set of additional CYP3A4 inhibitors was used, and 13 of 15 of these molecules were colocated in the regions of low Km values. This computational approach represents a novel method for use in the generation of metabolism models, enabling the scoring of libraries of compounds for their Km values to numerous P450s.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Databases, Factual/statistics & numerical data , Pharmaceutical Preparations/metabolism , Cytochrome P-450 CYP3A , Humans , Predictive Value of Tests , Protein Binding/physiology
5.
J Biomol Screen ; 9(1): 22-31, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15006145

ABSTRACT

Solubility of organic compounds in DMSO is an important issue for commercial and academic organizations handling large compound collections or performing biological screening. In particular, solubility data are critical for the optimization of storage conditions and for the selection of compounds for bioscreening compatible with the assay protocol. Solubility is largely determined by the solvation energy and the crystal disruption energy, and these molecular phenomena should be assessed in structure-solubility correlation studies. The authors summarize our long-term experimental observations and theoretical studies of physicochemical determinants of DMSO solubility of organic substances. They compiled a comprehensive reference database of proprietary data on compound solubility (55,277 compounds with good DMSO solubility and 10,223 compounds with poor DMSO solubility), calculated specific molecular descriptors (topological, electromagnetic, charge, and lipophilicity parameters), and applied an advanced machine-learning approach for training neural networks to address the solubility. Both supervised (feed-forward, back-propagated neural networks) and unsupervised (Kohonen neural networks) learning methods were used. The resulting neural network models were validated by successfully predicting DMSO solubility of compounds in independent test selections.


Subject(s)
Dimethyl Sulfoxide/chemistry , Organic Chemicals/pharmacology , Neural Networks, Computer , Organic Chemicals/chemistry , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...