Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Cell ; 36(4): 1441-1450, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36961656

ABSTRACT

Despite recent therapeutic advancements, cancer remains one of the leading causes of death worldwide, with mitochondrial dysfunction being associated with cancer initiation and progression, along with chemotherapeutic resistance and ferroptotic cell death failure; however, the significance of mitochondria in various cancer types remains a matter of debate for the moment. The aim of this study is to ascertain the outcome of transferring healthy mitochondria into the aggressive and rapidly proliferating prostate cancer (PC-3) cells and afterwards evaluate the efficacy of combination therapy with or without the ferroptosis inducer erastin. In this sense, normal mitochondria were first isolated from human umbilical cord-derived mesenchymal stem cells, human umbilical vein endothelial cells, and human embryonic kidney cells and were later transferred into PC-3 cells and rhodamine 6G-treated PC-3 cells exhibiting mitochondrial dysfunction. Next, cell proliferation and sensitivity to cisplatin were measured using Cell Counting Kit-8 and the Malondialdehyde Assay Lipid Peroxidation Kit, respectively, along with ferroptotic damage. Transferring the healthy mitochondria into PC-3 cells was observed to increase cell proliferation and rescue the cisplatin-induced cell death, but not the erastin-induced ferroptosis, as in mitochondrial transfer effectively enhanced erastin-mediated ferroptosis in PC-3 cells. Hence, the introduction of healthy mitochondria into the highly aggressive and proliferating cancer cells would be deemed a brand new therapeutic strategy for a variety of cancers.


Subject(s)
Ferroptosis , Neoplasms , Male , Humans , Cisplatin/pharmacology , PC-3 Cells , Endothelial Cells/metabolism , Mitochondria/metabolism , Neoplasms/metabolism
2.
Hum Cell ; 35(4): 972-994, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35415781

ABSTRACT

Despite the recent advances in cancer therapy, cancer chemoresistance looms large along with radioresistance, a major challenge in dire need of thorough and minute investigation. Not long ago, cancer cells were reported to have proven refractory to the ferroptotic cell death, a newly discovered form of regulated cell death (RCD), conspicuous enough to draw attention from scholars in terms of targeting ferroptosis as a prospective therapeutic strategy. However, our knowledge concerning the underlying molecular mechanisms through which cancer cells gain immunity against ferroptosis is still in its infancy. Of late, the implication of non-coding RNAs (ncRNAs), including circular RNAs (circRNAs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) in ferroptosis has been disclosed. Nevertheless, precisely explaining the molecular mechanisms behind the contribution of ncRNAs to cancer radio/chemotherapy resistance remains a challenge, requiring further clarification. In this review, we have presented the latest available information on the ways and means of regulating ferroptosis by ncRNAs. Moreover, we have provided important insights about targeting ncRNAs implicated in ferroptosis with the hope of opening up new horizons for overcoming cancer treatment modalities. Though a long path awaits until we make this ambitious dream come true, recent progress in gene therapy, including gene-editing technology will aid us to be optimistic that ncRNAs-based ferroptosis targeting would soon be on stream as a novel therapeutic strategy for treating cancer.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Cell Death/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/therapy , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated/genetics
3.
Curr Cancer Drug Targets ; 22(2): 108-125, 2022.
Article in English | MEDLINE | ID: mdl-34856903

ABSTRACT

Ferroptosis is a non-apoptotic mode of Regulated Cell Death (RCD) driven by excessive accumulation of toxic lipid peroxides and iron overload. Ferroptosis could be triggered by inhibiting the antioxidant defense system and accumulating iron-dependent Reactive Oxygen Species (ROS) that react with polyunsaturated fatty acids in abundance. Emerging evidence over the past few years has revealed that ferroptosis is of great potential in inhibiting growth and metastasis and overcoming tumor cell resistance. Thus, targeting this form of cell death could be perceived as a potentially burgeoning approach in cancer treatment. This review briefly presents the underlying mechanisms of ferroptosis and further aims to discuss various types of existing drugs and natural compounds that could be potentially repurposed for targeting ferroptosis in tumor cells. This, in turn, will provide critical perspectives on future studies concerning ferroptosis-based cancer therapy.


Subject(s)
Ferroptosis , Neoplasms , Cell Death , Humans , Iron/metabolism , Lipid Peroxidation/physiology , Neoplasms/drug therapy , Neoplasms/pathology , Reactive Oxygen Species/metabolism
4.
Life Sci ; 285: 119958, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34534562

ABSTRACT

Ferroptosis is a new type of non-apoptotic regulated cell death (RCD) driven by unrestricted lethal lipid peroxidation, which is totally distinct from other forms of RCD in genetic and biochemical characteristics. It is generally believed that iron dependency, malfunction of the redox system, and excessive lipid peroxidation are the main hallmarks of ferroptosis. Accumulating pieces of evidence over the past few years have shown that ferroptosis is tightly related to various types of diseases, especially cancers. Ferroptosis has recently attracted great attention in the field of cancer research. A plethora of evidence shows that employing ferroptosis as a powerful weapon can remarkably enhance the efficacy of tumor cell annihilation. Better knowledge of the ferroptosis mechanisms and their interplay with cancer biology would enable us to use this fashionable tool in the best way. Herein, we will briefly present the relevant mechanisms of ferroptosis, the multifaceted relation between ferroptosis and cancer, encompassing tumor immunity, overcoming chemoresistance, and epithelial to mesenchymal transition. In the end, we will also briefly discuss the potential approaches to ferroptosis-based cancer therapy, such as using drugs and small molecules, nanoparticles, mitochondrial targeting, and photodynamic therapy.


Subject(s)
Ferroptosis/physiology , Neoplasms , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Ferroptosis/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...