Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(2)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35204103

ABSTRACT

To evaluate the differences in action of commercially available 2-oxoglutarate mimetics and "branched-tail" oxyquinoline inhibitors of hypoxia-inducible factor prolyl hydroxylase (HIF PHD), the inhibitors' IC50 values in the activation of HIF1 ODD-luciferase reporter were selected for comparative transcriptomics. Structure-activity relationship and computer modeling for the oxyquinoline series of inhibitors led to the identification of novel inhibitors, which were an order of magnitude more active in the reporter assay than roxadustat and vadadustat. Unexpectedly, 2-methyl-substitution in the oxyquinoline core of the best HIF PHD inhibitor was found to be active in the reporter assay and almost equally effective in the pretreatment paradigm of the oxygen-glucose deprivation in vitro model. Comparative transcriptomic analysis of the signaling pathways induced by HIF PHD inhibitors showed high potency of the two novel oxyquinoline inhibitors (#4896-3249 and #5704-0720) at 2 µM concentrations matching the effect of 30 µM roxadustat and 500 µM dimethyl oxalyl glycine in inducing HIF1 and HIF2-linked pathways. The two oxyquinoline inhibitors exerted the same activation of HIF-triggered glycolytic pathways but opposite effects on signaling pathways linked to alternative substrates of HIF PHD 1 and 3, such as p53, NF-κB, and ATF4. This finding can be interpreted as the specificity of the 2-methyl-substitute variant for HIF PHD2.

2.
Biochimie ; 179: 217-227, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33098909

ABSTRACT

Epigenetic alterations represent promising therapeutic targets in cancer treatment. Recently it was revealed that small molecules have the potential to act as microRNA silencers. Capacity to bind the discrete stem-looped structure of pre-miR-21 and prevent its maturation opens opportunities to utilize such compounds for the prevention of initiation, progression, and chemoresistance of cancer. Molecular simulations performed earlier identified 3,3'-diindolylmethane (DIM) as a potent microRNA-21 antagonist. However, data on DIM and microRNA-21 interplay is controversial, which may be caused by the limitations of the cell lines.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Indoles/pharmacology , Organoids/drug effects , Organoids/metabolism , Aged , Breast Neoplasms/pathology , Cyclophosphamide/pharmacology , Female , Humans , Methotrexate/pharmacology , MicroRNAs/antagonists & inhibitors , MicroRNAs/metabolism , Organoids/pathology , Primary Cell Culture
3.
Front Pharmacol ; 11: 621054, 2020.
Article in English | MEDLINE | ID: mdl-33584306

ABSTRACT

The review analyzes the potential advantages and problems associated with using HIF prolyl hydroxylase inhibitors as a treatment for COVID-19. HIF prolyl hydroxylase inhibitors are known to boost endogenous erythropoietin (Epo) and activate erythropoiesis by stabilizing and activating the hypoxia inducible factor (HIF). Recombinant Epo treatment has anti-inflammatory and healing properties, and thus, very likely, will be beneficial for moderate to severe cases of COVID-19. However, HIF PHD inhibition may have a significantly broader effect, in addition to stimulating the endogenous Epo production. The analysis of HIF target genes reveals that some HIF-targets, such as furin, could play a negative role with respect to viral entry. On the other hand, HIF prolyl hydroxylase inhibitors counteract ferroptosis, the process recently implicated in vessel damage during the later stages of COVID-19. Therefore, HIF prolyl hydroxylase inhibitors may serve as a promising treatment of COVID-19 complications, but they are unlikely to aid in the prevention of the initial stages of infection.

4.
Drug Metab Lett ; 13(1): 45-52, 2019.
Article in English | MEDLINE | ID: mdl-30488807

ABSTRACT

BACKGROUND: "Branched tail" oxyquinolines, and adaptaquin in particular, are potent HIF prolyl hydroxylase inhibitors showing promising results in in vivo hemorrhagic stroke models. The further improvement of the potency resulted in identification of a number of adaptaquin analogs. Early evaluation of toxicity and metabolism is desired right at the step of lead selection. OBJECTIVE: The aim of the study is to characterize the toxicity and metabolism of adaptaquin and its new improved analogs. METHOD: Liver-on-a-chip technology with differentiated HepaRG cells followed by LC-MS detection of the studied compounds and metabolites of the P450 substrate-inhibitor panel for CYP2B6, CYP2C9, CYP2C19, and CYP3A4. RESULTS: The optimized adaptaquin analogs show no toxicity up to a 100-fold increased range over EC50. The drugs are metabolized by CYP3A4 and CYP2B6 as shown with the use of the cytochrome P450 substrate-inhibitor panel designed and optimized for preclinical evaluation of drugs' in vitro biotransformation on a 3D human histotypical cell model using "liver-on-a-chip" technology. Activation of CYP2B6 with the drugs tested has been observed. A scheme for adaptaquin oxidative conversion is proposed. CONCLUSION: The optimized adaptaquin analogs are suitable for further preclinical trials. Activation of CYP2B6 with adaptaquin and its variants points to a potential increase in Tylenol toxicity if administered together.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Lab-On-A-Chip Devices , Prolyl-Hydroxylase Inhibitors/pharmacology , Quinolines/pharmacology , Toxicity Tests/instrumentation , Biotransformation , Cell Line , Cytochrome P-450 Enzyme System/metabolism , Drug Evaluation, Preclinical , Hepatocytes , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Liver/cytology , Liver/metabolism , Oxidation-Reduction , Prolyl-Hydroxylase Inhibitors/chemistry , Quinolines/chemistry
5.
Drug Metab Pers Ther ; 33(2): 65-73, 2018 06 27.
Article in English | MEDLINE | ID: mdl-29727298

ABSTRACT

BACKGROUND: Phenazepam (bromdihydrochlorphenylbenzodiazepine) is the original Russian benzodiazepine tranquilizer belonging to 1,4-benzodiazepines. There is still limited knowledge about phenazepam's metabolic liver pathways and other pharmacokinetic features. METHODS: To determine phenazepam's metabolic pathways, the study was divided into three stages: in silico modeling, in vitro experiment (cell culture study), and in vivo confirmation. In silico modeling was performed on the specialized software PASS and GUSAR to evaluate phenazepam molecule affinity to different cytochromes. The in vitro study was performed using a hepatocytes' cell culture, cultivated in a microbioreactor to produce cytochrome P450 isoenzymes. The culture medium contained specific cytochrome P450 isoforms inhibitors and substrates (for CYP2C9, CYP3A4, CYP2C19, and CYP2B6) to determine the cytochrome that was responsible for phenazepam's metabolism. We also measured CYP3A activity using the 6-betahydroxycortisol/cortisol ratio in patients. RESULTS: According to in silico and in vitro analysis results, the most probable metabolizer of phenazepam is CYP3A4. By the in vivo study results, CYP3A activity decreased sufficiently (from 3.8 [95% CI: 2.94-4.65] to 2.79 [95% CI: 2.02-3.55], p=0.017) between the start and finish of treatment in patients who were prescribed just phenazepam. CONCLUSIONS: Experimental in silico and in vivo studies confirmed that the original Russian benzodiazepine phenazepam was the substrate of CYP3A4 isoenzyme.


Subject(s)
Benzodiazepines/metabolism , Computer Simulation , Cytochrome P-450 CYP3A/metabolism , Hepatocytes/enzymology , Hypnotics and Sedatives/metabolism , Liver/enzymology , Models, Biological , Biomarkers/blood , Bioreactors , Cell Culture Techniques/instrumentation , Cells, Cultured , Humans , Hydrocortisone/analogs & derivatives , Hydrocortisone/blood , Hypnotics and Sedatives/blood , Hypnotics and Sedatives/pharmacokinetics , Isoenzymes , Substrate Specificity
6.
ACS Chem Neurosci ; 9(5): 894-900, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29338172

ABSTRACT

Activation of HIF-1α and Nrf2 is a primary component of cellular response to oxidative stress, and activation of HIF-1α and Nrf2 provides neuroprotection in models of neurodegenerative disorders, including ischemic stroke, Alzheimer's and Parkinson's diseases. Screening a library of CNS-targeted drugs using novel reporters for HIF-1α and Nrf2 elevation in neuronal cells revealed histone deacetylase (HDAC) inhibitors as potential activators of these pathways. We report the identification of phenylhydroxamates as single agents exhibiting tripartite inhibition of HDAC6, inhibition of HIF-1 prolyl hydroxylase (PHD), and activation of Nrf2. Two superior tripartite agents, ING-6 and ING-66, showed neuroprotection against various cellular insults, associated with stabilization of both Nrf2 and HIF-1, and expression of their respective target genes in vitro and in vivo. Discovery of the innate ability of phenylhydroxamate HDAC inhibitors to activate Nrf2 and HIF provides a novel route to multifunctional neuroprotective agents and cautions against HDAC6 selective inhibitors as chemical probes of specific HDAC isoform function.


Subject(s)
Histone Deacetylase 6/metabolism , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Hydroxylamines/pharmacology , Neurodegenerative Diseases/drug therapy , Neurons/drug effects , Neuroprotective Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...