Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Tomography ; 9(5): 1772-1786, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37888733

ABSTRACT

In this technical note, we examine the capabilities of deep convolutional neural networks (DCNNs) for diagnosing osteoporosis through cone-beam computed tomography (CBCT) scans of the mandible. The evaluation was conducted using 188 patients' mandibular CBCT images utilizing DCNN models built on the ResNet-101 framework. We adopted a segmented three-phase method to assess osteoporosis. Stage 1 focused on mandibular bone slice identification, Stage 2 pinpointed the coordinates for mandibular bone cross-sectional views, and Stage 3 computed the mandibular bone's thickness, highlighting osteoporotic variances. The procedure, built using ResNet-101 networks, showcased efficacy in osteoporosis detection using CBCT scans: Stage 1 achieved a remarkable 98.85% training accuracy, Stage 2 minimized L1 loss to a mere 1.02 pixels, and the last stage's bone thickness computation algorithm reported a mean squared error of 0.8377. These findings underline the significant potential of AI in osteoporosis identification and its promise for enhanced medical care. The compartmentalized method endorses a sturdier DCNN training and heightened model transparency. Moreover, the outcomes illustrate the efficacy of a modular transfer learning method for osteoporosis detection, even when relying on limited mandibular CBCT datasets. The methodology given is accompanied by the source code available on GitLab.


Subject(s)
Osteoporosis , Humans , Cross-Sectional Studies , Osteoporosis/diagnostic imaging , Cone-Beam Computed Tomography/methods , Mandible/diagnostic imaging , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...