Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5222, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890340

ABSTRACT

Traumatic brain injury (TBI) can result in long-lasting changes in hippocampal function. The changes induced by TBI on the hippocampus contribute to cognitive deficits. The adult hippocampus harbors neural stem cells (NSCs) that generate neurons (neurogenesis), and astrocytes (astrogliogenesis). While deregulation of hippocampal NSCs and neurogenesis have been observed after TBI, it is not known how TBI may affect hippocampal astrogliogenesis. Using a controlled cortical impact model of TBI in male mice, single cell RNA sequencing and spatial transcriptomics, we assessed how TBI affected hippocampal NSCs and the neuronal and astroglial lineages derived from them. We observe an increase in NSC-derived neuronal cells and a concomitant decrease in NSC-derived astrocytic cells, together with changes in gene expression and cell dysplasia within the dentate gyrus. Here, we show that TBI modifies NSC fate to promote neurogenesis at the cost of astrogliogenesis and identify specific cell populations as possible targets to counteract TBI-induced cellular changes in the adult hippocampus.


Subject(s)
Astrocytes , Brain Injuries, Traumatic , Hippocampus , Neural Stem Cells , Neurogenesis , Animals , Male , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Hippocampus/pathology , Hippocampus/cytology , Astrocytes/metabolism , Mice , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Neurons/metabolism , Mice, Inbred C57BL , Dentate Gyrus/pathology , Disease Models, Animal , Cell Differentiation , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...