Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(33): 37595-37607, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35969637

ABSTRACT

As a ubiquitous family of enzymes with high performance in converting carbon dioxide (CO2) into bicarbonate, carbonic anhydrases (CAs) sparked enormous attention for carbon capture. Nevertheless, the high cost and operational instability of CAs hamper their practical relevance, and the utility of CAs is mainly limited to aqueous applications where CO2-to-bicarbonate conversion is possible. Taking advantage of the chemical motif that endows CA-like active sites (metal-coordinated histidine), here we introduce a new line of high-performance gas separation membranes with CO2-philic behavior. We first self-assembled a histidine-based bolaamphiphile (His-Bola) molecule in the aqueous phase and coordinated the resulting entities with divalent zinc. Optimizing the supramolecular synthesis conditions ensured that the resultant nanoparticles (His-NPs) exhibit high CO2 affinity and catalytic activity. We then exploited the His-NPs as nanofillers to enhance the separation performance of Pebax MH 1657. The hydrogen-bonding interactions allowed the dispersion of His-NPs within the polymer matrix uniformly, as confirmed by microscopic, spectroscopic, and thermal analyses. The imidazole and amine functionalities of His-NPs enhanced the solubility of CO2 molecules in the polymer matrix. The CA-mimic active sites of His-NPs nanozymes, on the other hand, catalyzed the reversible hydration of CO2 molecules in humid conditions, facilitating their transport across the membranes. The resulting nanocomposite membranes displayed excellent CO2 separation performance, with a high level of stability. At a filling ratio as low as 3 wt %, we achieved a CO2 permeability of >145 Barrer and a CO2/N2 selectivity of >95 with retained performance under humid continuous gas feeds. The bio-inspired approach presented in this work offers a promising platform for designing durable and highly selective CO2 capture membranes.


Subject(s)
Carbonic Anhydrases , Bicarbonates , Carbon Dioxide/chemistry , Carbonic Anhydrases/chemistry , Histidine , Polymers
2.
Biosci Biotechnol Biochem ; 86(4): 444-454, 2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35134837

ABSTRACT

CYP105A1 from Streptomyces griseolus converts vitamin D3 to its biologically active form, 1α,25-dihydroxy vitamin D3. R73A/R84A mutation enhanced the 1α- and 25-hydroxylation activity for vitamin D3, while M239A mutation generated the 1α-hydroxylation activity for vitamin D2. In this study, the stability of six CYP105A1 enzymes, including 5 variants (R73A/R84A, M239A, R73A/R84A/M239A (=TriA), TriA/E90A, and TriA/E90D), was examined. Circular dichroism analysis revealed that M239A markedly reduces the enzyme stability. Protein fluorescence analysis disclosed that these mutations, especially M239A, induce large changes in the local conformation around Trp residues. Strong stabilizing effect of glycerol was observed. Nondenaturing PAGE analysis showed that CYP105A1 enzymes are prone to self-association. Fluorescence analysis using a hydrophobic probe 8-anilino-1-naphthalenesulfonic acid suggested that M239A mutation enhances self-association and that E90A and E90D mutations, in cooperation with M239A, accelerate self-association with little effect on the stability.


Subject(s)
Bacterial Proteins , Cytochrome P-450 Enzyme System , Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Vitamin D , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL
...