ABSTRACT
BACKGROUND: The composite coverage index (CCI) provides an integrated perspective towards universal health coverage in the context of reproductive, maternal, newborn and child health. Given the sample design of most household surveys does not provide coverage estimates below the first administrative level, approaches for achieving more granular estimates are needed. We used a model-based geostatistical approach to estimate the CCI at multiple resolutions in Peru. METHODS: We generated estimates for the eight indicators on which the CCI is based for the departments, provinces, and areas of 5 × 5 km of Peru using data from two national household surveys carried out in 2018 and 2019 plus geospatial covariates. Bayesian geostatistical models were fit using the INLA-SPDE approach. We assessed model fit using cross-validation at the survey cluster level and by comparing modelled and direct survey estimates at the department-level. RESULTS: CCI coverage in the provinces along the coast was consistently higher than in the remainder of the country. Jungle areas in the north and east presented the lowest coverage levels and the largest gaps between and within provinces. The greatest inequalities were found, unsurprisingly, in the largest provinces where populations are scattered in jungle territory and are difficult to reach. CONCLUSIONS: Our study highlighted provinces with high levels of inequality in CCI coverage indicating areas, mostly low-populated jungle areas, where more attention is needed. We also uncovered other areas, such as the border with Bolivia, where coverage is lower than the coastal provinces and should receive increased efforts. More generally, our results make the case for high-resolution estimates to unveil geographic inequities otherwise hidden by the usual levels of survey representativeness.
Subject(s)
Child Health Services , Child , Infant, Newborn , Humans , Peru , Bayes Theorem , Child Health , Family CharacteristicsABSTRACT
BACKGROUND: Geospatial approaches are increasingly used to produce fine spatial scale estimates of reproductive, maternal, newborn and child health (RMNCH) indicators in low- and middle-income countries (LMICs). This study aims to describe important methodological aspects and specificities of geospatial approaches applied to RMNCH coverage and impact outcomes and enable non-specialist readers to critically evaluate and interpret these studies. METHODS: Two independent searches were carried out using Medline, Web of Science, Scopus, SCIELO and LILACS electronic databases. Studies based on survey data using geospatial approaches on RMNCH in LMICs were considered eligible. Studies whose outcomes were not measures of occurrence were excluded. RESULTS: We identified 82 studies focused on over 30 different RMNCH outcomes. Bayesian hierarchical models were the predominant modeling approach found in 62 studies. 5 × 5 km estimates were the most common resolution and the main source of information was Demographic and Health Surveys. Model validation was under reported, with the out-of-sample method being reported in only 56% of the studies and 13% of the studies did not present a single validation metric. Uncertainty assessment and reporting lacked standardization, and more than a quarter of the studies failed to report any uncertainty measure. CONCLUSIONS: The field of geospatial estimation focused on RMNCH outcomes is clearly expanding. However, despite the adoption of a standardized conceptual modeling framework for generating finer spatial scale estimates, methodological aspects such as model validation and uncertainty demand further attention as they are both essential in assisting the reader to evaluate the estimates that are being presented.