Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Eur Heart J Open ; 4(3): oeae035, 2024 May.
Article in English | MEDLINE | ID: mdl-38895109

ABSTRACT

Aims: APOC3, ANGPTL3, and ANGPTL4 are circulating proteins that are actively pursued as pharmacological targets to treat dyslipidaemia and reduce the risk of atherosclerotic cardiovascular disease. Here, we used human genetic data to compare the predicted therapeutic and adverse effects of APOC3, ANGPTL3, and ANGPTL4 inactivation. Methods and results: We conducted drug-target Mendelian randomization analyses using variants in proximity to the genes associated with circulating protein levels to compare APOC3, ANGPTL3, and ANGPTL4 as drug targets. We obtained exposure and outcome data from large-scale genome-wide association studies and used generalized least squares to correct for linkage disequilibrium-related correlation. We evaluated five primary cardiometabolic endpoints and screened for potential side effects across 694 disease-related endpoints, 43 clinical laboratory tests, and 11 internal organ MRI measurements. Genetically lowering circulating ANGPTL4 levels reduced the odds of coronary artery disease (CAD) [odds ratio, 0.57 per s.d. protein (95% CI 0.47-0.70)] and Type 2 diabetes (T2D) [odds ratio, 0.73 per s.d. protein (95% CI 0.57-0.94)]. Genetically lowering circulating APOC3 levels also reduced the odds of CAD [odds ratio, 0.90 per s.d. protein (95% CI 0.82-0.99)]. Genetically lowered ANGPTL3 levels via common variants were not associated with CAD. However, meta-analysis of protein-truncating variants revealed that ANGPTL3 inactivation protected against CAD (odds ratio, 0.71 per allele [95%CI, 0.58-0.85]). Analysis of lowered ANGPTL3, ANGPTL4, and APOC3 levels did not identify important safety concerns. Conclusion: Human genetic evidence suggests that therapies aimed at reducing circulating levels of ANGPTL3, ANGPTL4, and APOC3 reduce the risk of CAD. ANGPTL4 lowering may also reduce the risk of T2D.

2.
J Lipid Res ; 63(7): 100237, 2022 07.
Article in English | MEDLINE | ID: mdl-35667416

ABSTRACT

Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.


Subject(s)
Glucose , Lymphadenopathy , Angiopoietin-Like Protein 4/genetics , Animals , Mice , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/pharmacology , Triglycerides
3.
Front Physiol ; 13: 859671, 2022.
Article in English | MEDLINE | ID: mdl-35422714

ABSTRACT

Cold-induced activation of brown adipose tissue (BAT) has an important impact on systemic lipoprotein metabolism by accelerating the processing of circulating triglyceride-rich lipoproteins (TRL). Lipoprotein lipase (LPL) expressed by adipocytes is translocated via endothelial to the capillary lumen, where LPL acts as the central enzyme for the vascular lipoprotein processing. Based on preliminary data showing that LPL is not only expressed in adipocytes but also in endothelial cells of cold-activated BAT, we aimed to dissect the relevance of endothelial versus adipocyte LPL for lipid and energy metabolism in the context of adaptive thermogenesis. By metabolic studies we found that cold-induced triglyceride uptake into BAT, lipoprotein disposal, glucose uptake and adaptive thermogenesis were not impaired in mice lacking Lpl exclusively in endothelial cells. This finding may be explained by a compensatory upregulation in the expression of adipocyte-derived Lpl and endothelial lipase (Lipg).

4.
Sci Adv ; 7(11)2021 03.
Article in English | MEDLINE | ID: mdl-33712458

ABSTRACT

Increased levels of apolipoprotein CIII (apoCIII), a key regulator of lipid metabolism, result in obesity-related metabolic derangements. We investigated mechanistically whether lowering or preventing high-fat diet (HFD)-induced increase in apoCIII protects against the detrimental metabolic consequences. Mice, first fed HFD for 10 weeks and thereafter also given an antisense (ASO) to lower apoCIII, already showed reduced levels of apoCIII and metabolic improvements after 4 weeks, despite maintained obesity. Prolonged ASO treatment reversed the metabolic phenotype due to increased lipase activity and receptor-mediated hepatic uptake of lipids. Fatty acids were transferred to the ketogenic pathway, and ketones were used in brown adipose tissue (BAT). This resulted in no fat accumulation and preserved morphology and function of liver and BAT. If ASO treatment started simultaneously with the HFD, mice remained lean and metabolically healthy. Thus, lowering apoCIII protects against and reverses the HFD-induced metabolic phenotype by promoting physiological insulin sensitivity.


Subject(s)
Diet, High-Fat , Metabolic Diseases , Adipose Tissue, Brown/metabolism , Animals , Apolipoprotein C-III/metabolism , Diet, High-Fat/adverse effects , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Obesity/prevention & control
5.
Cell Metab ; 33(3): 547-564.e7, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33357458

ABSTRACT

In response to cold exposure, thermogenic adipocytes internalize large amounts of fatty acids after lipoprotein lipase-mediated hydrolysis of triglyceride-rich lipoproteins (TRL) in the capillary lumen of brown adipose tissue (BAT) and white adipose tissue (WAT). Here, we show that in cold-exposed mice, vascular endothelial cells in adipose tissues endocytose substantial amounts of entire TRL particles. These lipoproteins subsequently follow the endosomal-lysosomal pathway, where they undergo lysosomal acid lipase (LAL)-mediated processing. Endothelial cell-specific LAL deficiency results in impaired thermogenic capacity as a consequence of reduced recruitment of brown and brite/beige adipocytes. Mechanistically, TRL processing by LAL induces proliferation of endothelial cells and adipocyte precursors via beta-oxidation-dependent production of reactive oxygen species, which in turn stimulates hypoxia-inducible factor-1α-dependent proliferative responses. In conclusion, this study demonstrates a physiological role for TRL particle uptake into BAT and WAT and establishes endothelial lipoprotein processing as an important determinant of adipose tissue remodeling during thermogenic adaptation.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Lipoproteins/metabolism , Lysosomes/metabolism , Thermogenesis , Triglycerides/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Animals , CD36 Antigens/metabolism , Cell Differentiation , Cell Proliferation , Cold Temperature , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lipoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Sterol Esterase/deficiency , Sterol Esterase/genetics , Sterol Esterase/metabolism , Triglycerides/genetics
6.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R563-R570, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30840486

ABSTRACT

The genetic background of a mouse strain determines its susceptibility to disease. C57BL/6J and Balb/CJ are two widely used inbred mouse strains that we found react dramatically differently to angiotensin II and high-salt diet (ANG II + Salt). Balb/CJ show increased mortality associated with anuria and edema formation while C57BL/6J develop arterial hypertension but do not decompensate and die. Clinical symptoms of heart failure in Balb/CJ mice gave the hypothesis that ANG II + Salt impairs cardiac function and induces cardiac remodeling in male Balb/CJ but not in male C57BL/6J mice. To test this hypothesis, we measured cardiac function using echocardiography before treatment and every day for 7 days during treatment with ANG II + Salt. Interestingly, pulsed wave Doppler of pulmonary artery flow indicated increased pulmonary vascular resistance and right ventricle systolic pressure in Balb/CJ mice, already 24 h after ANG II + Salt treatment was started. In addition, Balb/CJ mice showed abnormal diastolic filling indicated by reduced early and late filling and increased isovolumic relaxation time. Furthermore, Balb/CJ exhibited lower cardiac output compared with C57BL/6J even though they retained more sodium and water, as assessed using metabolic cages. Left posterior wall thickness increased during ANG II + Salt treatment but did not differ between the strains. In conclusion, ANG II + Salt treatment causes early restriction of pulmonary flow and reduced left ventricular filling and cardiac output in Balb/CJ, which results in fluid retention and peripheral edema. This makes Balb/CJ a potential model to study the adaptive capacity of the heart for identifying new disease mechanisms and drug targets.


Subject(s)
Angiotensin II/metabolism , Cardio-Renal Syndrome/physiopathology , Diet , Hypertension/physiopathology , Animals , Blood Pressure/physiology , Cardio-Renal Syndrome/complications , Heart Failure/physiopathology , Hypertension/complications , Hypertension, Pulmonary/complications , Male , Mice, Inbred BALB C , Myocardium/metabolism , Sodium Chloride, Dietary/metabolism , Sodium Chloride, Dietary/pharmacology , Time Factors , Water-Electrolyte Imbalance/drug therapy , Water-Electrolyte Imbalance/metabolism
7.
Am J Physiol Renal Physiol ; 316(5): F914-F933, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30785350

ABSTRACT

Balb/CJ mice are more sensitive to treatment with angiotensin II (ANG II) and high-salt diet compared with C57BL/6J mice. Together with higher mortality, they develop edema, signs of heart failure, and acute kidney injury. The aim of the present study was to identify differences in renal gene regulation that may affect kidney function and fluid balance, which could contribute to decompensation in Balb/CJ mice after ANG II + salt treatment. Male Balb/CJ and C57BL/6J mice were divided into the following five different treatment groups: control, ANG II, salt, ANG II + salt, and ANG II + salt + N-acetylcysteine. Gene expression microarrays were used to explore differential gene expression after treatment and between the strains. Published data from the Mouse Genome Database were used to identify the associated genomic differences. The glomerular filtration rate (GFR) was measured using inulin clearance, and fluid balance was measured using metabolic cages. Gene ontology enrichment analysis of gene expression microarrays identified glutathione transferase (antioxidant system) as highly enriched among differentially expressed genes. Balb/CJ mice had similar GFR compared with C57BL/6J mice but excreted less Na+ and water, although net fluid and electrolyte balance did not differ, suggesting that Balb/CJ mice may be inherently more prone to decompensation. Interestingly, C57BL/6J mice had higher urinary oxidative stress despite their relative protection from decompensation. In addition, treatment with the antioxidant N-acetylcysteine decreased oxidative stress in C57BL/6J mice, reduced urine excretion, and increased mortality. Balb/CJ mice are more sensitive than C57BL/6J to ANG II + salt, in part mediated by lower oxidative stress, which favors fluid and Na+ retention.


Subject(s)
Angiotensin II , Glomerular Filtration Rate , Kidney/physiopathology , Oxidative Stress , Sodium Chloride, Dietary , Water-Electrolyte Balance , Water-Electrolyte Imbalance/physiopathology , Animals , Blood Pressure , Disease Models, Animal , Female , Gene Expression Regulation , Glomerular Filtration Rate/genetics , Kidney/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Pregnancy , Sex Factors , Species Specificity , Water-Electrolyte Balance/genetics , Water-Electrolyte Imbalance/etiology , Water-Electrolyte Imbalance/genetics , Water-Electrolyte Imbalance/metabolism
8.
Am J Physiol Renal Physiol ; 316(3): F558-F571, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30698048

ABSTRACT

Activity of lipoprotein lipase (LPL) is high in mouse kidney, but the reason is poorly understood. The aim was to characterize localization, regulation, and function of LPL in kidney of C57BL/6J mice. We found LPL mainly in proximal tubules, localized inside the tubular epithelial cells, under all conditions studied. In fed mice, some LPL colocalized with the endothelial markers CD31 and GPIHBP1 and could be removed by perfusion with heparin, indicating a vascular location. The role of angiopoietin-like protein 4 (ANGPTL4) for nutritional modulation of LPL activity was studied in wild-type and Angptl4-/- mice. In Angptl4-/- mice, kidney LPL activity remained high in fasted animals, indicating that ANGPTL4 is involved in suppression of LPL activity on fasting, like in adipose tissue. The amount of ANGPTL4 protein in kidney was low, and the protein appeared smaller in size, compared with ANGPTL4 in heart and adipose tissue. To study the influence of obesity, mice were challenged with high-fat diet for 22 wk, and LPL was studied after an overnight fast compared with fasted mice given food for 3 h. High-fat diet caused blunting of the normal adaptation of LPL activity to feeding/fasting in adipose tissue, but in kidneys this adaptation was lost only in male mice. LPL activity increases to high levels in mouse kidney after feeding, but as no difference in uptake of chylomicron triglycerides in kidneys is found between fasted and fed states, our data confirm that LPL appears to have a minor role for lipid uptake in this organ.


Subject(s)
Diet, High-Fat , Kidney/metabolism , Lipoprotein Lipase/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Angiopoietin-Like Protein 4/genetics , Angiopoietin-Like Protein 4/metabolism , Animals , Female , Male , Mice , Mice, Knockout , Nutritional Status , Sex Factors
9.
Lancet ; 393(10167): 133-142, 2019 01 12.
Article in English | MEDLINE | ID: mdl-30522919

ABSTRACT

BACKGROUND: Primary prevention of cardiovascular disease often fails because of poor adherence among practitioners and individuals to prevention guidelines. We aimed to investigate whether ultrasound-based pictorial information about subclinical carotid atherosclerosis, targeting both primary care physicians and individuals, improves prevention. METHODS: Visualization of asymptomatic atherosclerotic disease for optimum cardiovascular prevention (VIPVIZA) is a pragmatic, open-label, randomised controlled trial that was integrated within the Västerbotten Intervention Programme, an ongoing population-based cardiovascular disease prevention programme in northern Sweden. Individuals aged 40, 50, or 60 years with one or more conventional risk factors were eligible to participate. Participants underwent clinical examination, blood sampling, and ultrasound assessment of carotid intima media wall thickness and plaque formation. Participants were randomly assigned 1:1 with a computer-generated randomisation list to an intervention group (pictorial representation of carotid ultrasound plus a nurse phone call to confirm understanding) or a control group (not informed). The primary outcomes, Framingham risk score (FRS) and European systematic coronary risk evaluation (SCORE), were assessed after 1 year among participants who were followed up. This study is registered with ClinicalTrials.gov, number NCT01849575. FINDINGS: 3532 individuals were enrolled between April 29, 2013, and June 7, 2016, of which 1783 were randomly assigned to the control group and 1749 were assigned to the intervention group. 3175 participants completed the 1-year follow-up. At the 1-year follow-up, FRS and SCORE differed significantly between groups (FRS 1·07 [95% CI 0·11 to 2·03, p=0·0017] and SCORE 0·16 [0·02 to 0·30, p=0·0010]). FRS decreased from baseline to the 1-year follow-up in the intervention group and increased in the control group (-0·58 [95% CI -0·86 to -0·30] vs 0·35 [0·08 to 0·63]). SCORE increased in both groups (0·13 [95% CI 0·09 to 0·18] vs 0·27 [0·23 to 0·30]). INTERPRETATION: This study provides evidence of the contributory role of pictorial presentation of silent atherosclerosis for prevention of cardiovascular disease. It supports further development of methods to reduce the major problem of low adherence to medication and lifestyle modification. FUNDING: Västerbotten County Council, the Swedish Research Council, the Heart and Lung Foundation, the Swedish Society of Medicine, and Carl Bennet Ltd, Sweden.


Subject(s)
Cardiovascular Diseases/prevention & control , Carotid Arteries/diagnostic imaging , Primary Prevention/methods , Adult , Atherosclerosis/diagnostic imaging , Carotid Intima-Media Thickness , Female , Follow-Up Studies , Health Behavior , Health Promotion/methods , Humans , Lipids/blood , Male , Middle Aged , Risk Assessment/methods
10.
Cell Metab ; 28(4): 644-655.e4, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30033199

ABSTRACT

The coordination of the organ-specific responses regulating systemic energy distribution to replenish lipid stores in acutely activated brown adipose tissue (BAT) remains elusive. Here, we show that short-term cold exposure or acute ß3-adrenergic receptor (ß3AR) stimulation results in secretion of the anabolic hormone insulin. This process is diminished in adipocyte-specific Atgl-/- mice, indicating that lipolysis in white adipose tissue (WAT) promotes insulin secretion. Inhibition of pancreatic ß cells abolished uptake of lipids delivered by triglyceride-rich lipoproteins into activated BAT. Both increased lipid uptake into BAT and whole-body energy expenditure in response to ß3AR stimulation were blunted in mice treated with the insulin receptor antagonist S961 or lacking the insulin receptor in brown adipocytes. In conclusion, we introduce the concept that acute cold and ß3AR stimulation trigger a systemic response involving WAT, ß cells, and BAT, which is essential for insulin-dependent fuel uptake and adaptive thermogenesis.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Cold Temperature , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Lipolysis/physiology , Receptors, Adrenergic, beta-3/metabolism , Adipocytes, Brown/metabolism , Adrenergic beta-3 Receptor Agonists/pharmacology , Animals , Diet, High-Fat , Dioxoles/pharmacology , Energy Metabolism/physiology , Lipase/metabolism , Lipoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptides/pharmacology , Receptor, Insulin/antagonists & inhibitors , Thermogenesis/physiology , Triglycerides/metabolism
11.
Nat Commun ; 8: 15010, 2017 04 19.
Article in English | MEDLINE | ID: mdl-28422089

ABSTRACT

Brown and beige adipocytes combust nutrients for thermogenesis and through their metabolic activity decrease pro-atherogenic remnant lipoproteins in hyperlipidemic mice. However, whether the activation of thermogenic adipocytes affects the metabolism and anti-atherogenic properties of high-density lipoproteins (HDL) is unknown. Here, we report a reduction in atherosclerosis in response to pharmacological stimulation of thermogenesis linked to increased HDL levels in APOE*3-Leiden.CETP mice. Both cold-induced and pharmacological thermogenic activation enhances HDL remodelling, which is associated with specific lipidomic changes in mouse and human HDL. Furthermore, thermogenic stimulation promotes HDL-cholesterol clearance and increases macrophage-to-faeces reverse cholesterol transport in mice. Mechanistically, we show that intravascular lipolysis by adipocyte lipoprotein lipase and hepatic uptake of HDL by scavenger receptor B-I are the driving forces of HDL-cholesterol disposal in liver. Our findings corroborate the notion that high metabolic activity of thermogenic adipocytes confers atheroprotective properties via increased systemic cholesterol flux through the HDL compartment.


Subject(s)
Adipocytes/metabolism , Cholesterol/metabolism , Lipoproteins, HDL/metabolism , Thermogenesis , Animals , Biological Transport , CD36 Antigens/metabolism , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Cold Temperature , Humans , Hyperlipidemias/drug therapy , Hyperlipidemias/pathology , Lipolysis , Lipoprotein Lipase/metabolism , Liver/metabolism , Male , Metabolome , Mice, Inbred C57BL , Triglycerides/metabolism
12.
Nutr Metab (Lond) ; 13: 79, 2016.
Article in English | MEDLINE | ID: mdl-27891164

ABSTRACT

BACKGROUND: Excess body fat is a major health issue and a risk factor for the development of numerous chronic diseases. Low-carbohydrate diets like the Atkins Diet are popular for rapid weight loss, but the long-term consequences remain the subject of debate. The Scandinavian low-carbohydrate high-fat (LCHF) diet, which has been popular in Scandinavian countries for about a decade, has very low carbohydrate content (~5 E %) but is rich in fat and includes a high proportion of saturated fatty acids. Here we investigated the metabolic and physiological consequences of a diet with a macronutrient composition similar to the Scandinavian LCHF diet and its effects on the organs, tissues, and metabolism of weight stable mice. METHODS: Female C57BL/6J mice were iso-energetically pair-fed for 4 weeks with standard chow or a LCHF diet. We measured body composition using echo MRI and the aerobic capacity before and after 2 and 4 weeks on diet. Cardiac function was assessed by echocardiography before and after 4 weeks on diet. The metabolic rate was measured by indirect calorimetry the fourth week of the diet. Mice were sacrificed after 4 weeks and the organ weight, triglyceride levels, and blood chemistry were analyzed, and the expression of key ketogenic, metabolic, hormonal, and inflammation genes were measured in the heart, liver, and adipose tissue depots of the mice using real-time PCR. RESULTS: The increase in body weight of mice fed a LCHF diet was similar to that in controls. However, while control mice maintained their body composition throughout the study, LCHF mice gained fat mass at the expense of lean mass after 2 weeks. The LCHF diet increased cardiac triglyceride content, impaired cardiac function, and reduced aerobic capacity. It also induced pronounced alterations in gene expression and substrate metabolism, indicating a unique metabolic state. CONCLUSIONS: Pair-fed mice eating LCHF increased their percentage of body fat at the expense of lean mass already after 2 weeks, and after 4 weeks the function of the heart deteriorated. These findings highlight the urgent need to investigate the effects of a LCHF diet on health parameters in humans.

13.
Am J Physiol Regul Integr Comp Physiol ; 310(11): R1045-52, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27009049

ABSTRACT

Genetic factors confer risk for cardiovascular disease. Recently, large genome-wide population studies have shown associations between genomic loci close to LRIG3 and heart failure and plasma high-density lipoprotein (HDL) cholesterol level. Here, we ablated Lrig3 in mice and investigated the importance of Lrig3 for heart function and plasma lipid levels. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze Lrig3 expression in the hearts of wild-type and Lrig3-deficient mice. In addition, molecular, physiological, and functional parameters such as organ weights, heart rate, blood pressure, heart structure and function, gene expression in the heart, and plasma insulin, glucose, and lipid levels were evaluated. The Lrig3-deficient mice were smaller than the wild-type mice but otherwise appeared grossly normal. Lrig3 was expressed at detectable but relatively low levels in adult mouse hearts. At 9 mo of age, ad libitum-fed Lrig3-deficient mice had lower insulin levels than wild-type mice. At 12 mo of age, Lrig3-deficient mice exhibited increased blood pressure, and the Lrig3-deficient female mice displayed signs of cardiac hypertrophy as assessed by echocardiography, heart-to-body weight ratio, and expression of the cardiac hypertrophy marker gene Nppa. Additionally, Lrig3-deficient mice had reduced plasma HDL cholesterol and free glycerol. These findings in mice complement the human epidemiological results and suggest that Lrig3 may influence heart function and plasma lipid levels in mice and humans.


Subject(s)
Blood Pressure , Cardiomegaly/physiopathology , Cholesterol, HDL/blood , Heart Rate , Membrane Proteins/metabolism , Myocardium/pathology , Animals , Down-Regulation , Female , Heart , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
14.
Cell Metab ; 23(3): 441-53, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26853749

ABSTRACT

FGF21 decreases plasma triglycerides (TGs) in rodents and humans; however, the underlying mechanism or mechanisms are unclear. In the present study, we examined the role of FGF21 in production and disposal of TG-rich lipoproteins (TRLs) in mice. Treatment with pharmacological doses of FGF21 acutely reduced plasma non-esterified fatty acids (NEFAs), liver TG content, and VLDL-TG secretion. In addition, metabolic turnover studies revealed that FGF21 facilitated the catabolism of TRL in white adipose tissue (WAT) and brown adipose tissue (BAT). FGF21-dependent TRL processing was strongly attenuated in CD36-deficient mice and transgenic mice lacking lipoprotein lipase in adipose tissues. Insulin resistance in diet-induced obese and ob/ob mice shifted FGF21 responses from WAT toward energy-combusting BAT. In conclusion, FGF21 lowers plasma TGs through a dual mechanism: first, by reducing NEFA plasma levels and consequently hepatic VLDL lipidation and, second, by increasing CD36 and LPL-dependent TRL disposal in WAT and BAT.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Fibroblast Growth Factors/pharmacology , Hypolipidemic Agents/pharmacology , Lipoproteins, VLDL/metabolism , Triglycerides/blood , Adipocytes, White/drug effects , Adipocytes, White/metabolism , Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Animals , Cells, Cultured , Drug Evaluation, Preclinical , Female , Fibroblast Growth Factors/therapeutic use , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Hypolipidemic Agents/therapeutic use , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout
15.
Eur J Med Chem ; 103: 191-209, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26355531

ABSTRACT

The risk of cardiovascular events increases in individuals with elevated plasma triglyceride (TG) levels, therefore advocating the need for efficient TG-lowering drugs. In the blood circulation, TG levels are regulated by lipoprotein lipase (LPL), an unstable enzyme that is only active as a non-covalently associated homodimer. We recently reported on a N-phenylphthalimide derivative (1) that stabilizes LPL in vitro, and moderately lowers triglycerides in vivo (Biochem. Biophys. Res. Commun.2014, 450, 1063). Herein, we establish structure-activity relationships of 51 N-phenylphthalimide analogs of the screening hit 1. In vitro evaluation highlighted that modifications on the phthalimide moiety were not tolerated and that lipophilic substituents on the central phenyl ring were functionally essential. The substitution pattern on the central phenyl ring also proved important to stabilize LPL. However, in vitro testing demonstrated rapid degradation of the phthalimide fragment in plasma which was addressed by replacing the phthalimide scaffold with other heterocyclic fragments. The in vitro potency was retained or improved and substance 80 proved stable in plasma and efficiently lowered plasma TGs in vivo.


Subject(s)
Lipoprotein Lipase/metabolism , Phthalimides/pharmacology , Triglycerides/blood , Animals , Caco-2 Cells , Dose-Response Relationship, Drug , Drug Design , Female , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Phthalimides/chemistry , Phthalimides/metabolism , Structure-Activity Relationship
16.
Proc Natl Acad Sci U S A ; 112(20): E2611-9, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25941406

ABSTRACT

Insulin resistance and ß-cell failure are the major defects in type 2 diabetes mellitus. However, the molecular mechanisms linking these two defects remain unknown. Elevated levels of apolipoprotein CIII (apoCIII) are associated not only with insulin resistance but also with cardiovascular disorders and inflammation. We now demonstrate that local apoCIII production is connected to pancreatic islet insulin resistance and ß-cell failure. An increase in islet apoCIII causes promotion of a local inflammatory milieu, increased mitochondrial metabolism, deranged regulation of ß-cell cytoplasmic free Ca(2+) concentration ([Ca(2+)]i) and apoptosis. Decreasing apoCIII in vivo results in improved glucose tolerance, and pancreatic apoCIII knockout islets transplanted into diabetic mice, with high systemic levels of the apolipoprotein, demonstrate a normal [Ca(2+)]i response pattern and no hallmarks of inflammation. Hence, under conditions of islet insulin resistance, locally produced apoCIII is an important diabetogenic factor involved in impairment of ß-cell function and may thus constitute a novel target for the treatment of type 2 diabetes mellitus.


Subject(s)
Apolipoprotein C-III/metabolism , Diabetes Mellitus, Type 2/physiopathology , Insulin Resistance/physiology , Insulin-Secreting Cells/pathology , Analysis of Variance , Animals , Apolipoprotein C-III/genetics , Blotting, Western , Calcium/metabolism , Cell Line, Tumor , Immunohistochemistry , Mice , Mice, Knockout , Microscopy, Confocal , Mitochondria/metabolism , Real-Time Polymerase Chain Reaction
17.
Biochem Biophys Res Commun ; 450(2): 1063-9, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24984153

ABSTRACT

Patients at increased cardiovascular risk commonly display high levels of plasma triglycerides (TGs), elevated LDL cholesterol, small dense LDL particles and low levels of HDL-cholesterol. Many remain at high risk even after successful statin therapy, presumably because TG levels remain high. Lipoprotein lipase (LPL) maintains TG homeostasis in blood by hydrolysis of TG-rich lipoproteins. Efficient clearance of TGs is accompanied by increased levels of HDL-cholesterol and decreased levels of small dense LDL. Given the central role of LPL in lipid metabolism we sought to find small molecules that could increase LPL activity and serve as starting points for drug development efforts against cardiovascular disease. Using a small molecule screening approach we have identified small molecules that can protect LPL from inactivation by the controller protein angiopoietin-like protein 4 during incubations in vitro. One of the selected compounds, 50F10, was directly shown to preserve the active homodimer structure of LPL, as demonstrated by heparin-Sepharose chromatography. On injection to hypertriglyceridemic apolipoprotein A-V deficient mice the compound ameliorated the postprandial response after an olive oil gavage. This is a potential lead compound for the development of drugs that could reduce the residual risk associated with elevated plasma TGs in dyslipidemia.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Hypolipidemic Agents/pharmacology , Lipoprotein Lipase/metabolism , Triglycerides/blood , Angiopoietin-Like Protein 4 , Angiopoietins/metabolism , Animals , Apolipoprotein A-V , Apolipoproteins/genetics , Enzyme Stability , Heterocyclic Compounds, 4 or More Rings/chemistry , Hypertriglyceridemia/blood , Hypertriglyceridemia/drug therapy , Lipoprotein Lipase/chemistry , Mice, Inbred C57BL , Mice, Knockout , Postprandial Period , Protein Binding , Protein Multimerization , Pyridines/chemistry , Pyridines/pharmacology , Small Molecule Libraries , Structure-Activity Relationship
18.
Sci Transl Med ; 5(196): 196ra100, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23903754

ABSTRACT

Adaptive immunity has a major impact on atherosclerosis, with pro- and anti-atherosclerotic effects exerted by different subpopulations of T cells. Transforming growth factor-ß (TGF-ß) may promote development either of anti-atherosclerotic regulatory T cells or of T helper 17 (TH17) cells, depending on factors in the local milieu. We have addressed the effect on atherosclerosis of enhanced TGF-ß signaling in T cells. Bone marrow from mice with a T cell-specific deletion of Smad7, a potent inhibitor of TGF-ß signaling, was transplanted into hypercholesterolemic Ldlr(-/-) mice. Smad7-deficient mice had significantly larger atherosclerotic lesions that contained large collagen-rich caps, consistent with a more stable phenotype. The inflammatory cytokine interleukin-6 (IL-6) was expressed in the atherosclerotic aorta, and increased mRNA for IL-17A and the TH17-specific transcription factor RORγt were detected in draining lymph nodes. Treating Smad7-deficient chimeras with neutralizing IL-17A antibodies reversed stable cap formation. IL-17A stimulated collagen production by human vascular smooth muscle cells, and RORγt mRNA correlated positively with collagen type I and α-smooth muscle actin mRNA in a biobank of human atherosclerotic plaques. These data link IL-17A to induction of a stable plaque phenotype, could lead to new plaque-stabilizing therapies, and should prompt an evaluation of cardiovascular events in patients treated with IL-17 receptor blockade.


Subject(s)
Interleukin-17/metabolism , Plaque, Atherosclerotic/pathology , Signal Transduction , T-Lymphocytes/metabolism , Transforming Growth Factor beta/metabolism , Animals , Antibodies, Neutralizing/pharmacology , Aorta/pathology , Bone Marrow Cells/drug effects , Bone Marrow Cells/pathology , Chimera , Collagen/biosynthesis , Humans , Immunohistochemistry , Integrases/metabolism , Interleukin-17/immunology , Interleukin-6/immunology , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/metabolism , Receptors, LDL/deficiency , Receptors, LDL/metabolism , Signal Transduction/drug effects , Smad7 Protein/deficiency , Smad7 Protein/metabolism , T-Lymphocytes/drug effects , Th17 Cells/drug effects , Th17 Cells/metabolism
19.
J Clin Invest ; 123(3): 1323-34, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23426179

ABSTRACT

Atherosclerosis is a chronic inflammatory disease promoted by hyperlipidemia. Several studies support FOXP3-positive regulatory T cells (Tregs) as inhibitors of atherosclerosis; however, the mechanism underlying this protection remains elusive. To define the role of FOXP3-expressing Tregs in atherosclerosis, we used the DEREG mouse, which expresses the diphtheria toxin (DT) receptor under control of the Treg-specific Foxp3 promoter, allowing for specific ablation of FOXP3+ Tregs. Lethally irradiated, atherosclerosis-prone, low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice received DEREG bone marrow and were injected with DT to eliminate FOXP3(+) Tregs. Depletion of Tregs caused a 2.1-fold increase in atherosclerosis without a concomitant increase in vascular inflammation. These mice also exhibited a 1.7-fold increase in plasma cholesterol and an atherogenic lipoprotein profile with increased levels of VLDL. Clearance of VLDL and chylomicron remnants was hampered, leading to accumulation of cholesterol-rich particles in the circulation. Functional and protein analyses complemented by gene expression array identified reduced protein expression of sortilin-1 in liver and increased plasma enzyme activity of lipoprotein lipase, hepatic lipase, and phospholipid transfer protein as mediators of the altered lipid phenotype. These results demonstrate that FOXP3(+) Tregs inhibit atherosclerosis by modulating lipoprotein metabolism.


Subject(s)
Atherosclerosis/immunology , Forkhead Transcription Factors/metabolism , Hypercholesterolemia/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Aorta/pathology , Atherosclerosis/blood , Atherosclerosis/pathology , Cells, Cultured , Forkhead Transcription Factors/genetics , Hypercholesterolemia/blood , Hypercholesterolemia/pathology , Lipase/metabolism , Lipid Metabolism/genetics , Lipids/blood , Lipoproteins, VLDL/biosynthesis , Liver/enzymology , Liver/metabolism , Lymphocyte Depletion , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Phospholipid Transfer Proteins/blood , Receptors, LDL/deficiency , Receptors, LDL/genetics , Transcriptome
20.
J Lipid Res ; 54(3): 649-661, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23307945

ABSTRACT

During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia.


Subject(s)
Apolipoproteins A/chemistry , Apolipoproteins A/metabolism , Hypertriglyceridemia/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Apolipoprotein A-V , Apolipoproteins A/genetics , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Female , Humans , Liposomes/chemistry , Liposomes/metabolism , Male , Middle Aged , Mutagenesis, Site-Directed , Mutation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...