Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 20(11): e202300799, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37702285

ABSTRACT

Pyrazolic hybrids appended with naphthalene, p-chlorobenzene, o-phenol and toluene have been synthesized using Claisen Schmidt condensation reaction of 1-benzyl-3,5-dimethyl-1H-pyrazole-4-carbaldehyde. All compounds were characterized by various spectroscopic techniques. Compound (E)-3-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-1-(4-chlorophenyl)prop-2-en-1-one crystallizes in monoclinic crystal system with C2/c space group. These synthesized compounds were tested for cytotoxic activity and among these compounds 4b and 5a shows prominent cytotoxic activity against triple-negative breast cancer (TNBC) cells MDA-MB-231 with IC50 values 47.72 µM and 24.25 µM, respectively. Distinguishing morphological changes were noticed in MDA-MB-231 cells treated with pyrazole hybrids contributing to apoptosis action. To get more insight into cytotoxic activity, in silico molecular docking of these compounds were performed and the results suggested that (E)-3-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-1-(p-tolyl)prop-2-en-1-one and 1-(1'-benzyl-5-(4-chlorophenyl)-3',5'-dimethyl-3,4-dihydro-1'H,2H-[3,4'-bipyrazol]-2-yl)ethan-1-one binds to the prominent domain of Akt2 indicating their potential ability as Akt2 inhibitor. Moreover, from in silico ADME studies clearly demonstrated that these compounds may be regarded as a drug candidate for sub-lingual absorption based on log p values (2.157-4.924). These compounds also show promising antitubercular activity. The overall results suggest that pyrazolic hybrids with substitution at less sterically hindered positions have appealing potent cytotoxic activity and antituberculosis activity due to which they may act as multidrug candidate.


Subject(s)
Antineoplastic Agents , MDA-MB-231 Cells , Molecular Docking Simulation , Molecular Structure , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemistry , Structure-Activity Relationship
2.
J Ethnopharmacol ; 312: 116472, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37062530

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prosopis juliflora (Sw.), DC is a xerophytic plant species that extensively grow in Asia, Africa, Australia, and Brazil. From ancient time P. juliflora is being utilized in various folk remedies for example in wound healing, fever, inflammation, measles, excrescences, diarrhea and dysentery. Traditionally, gum, paste, and smoke obtained from the leaves and pods are applied for anticancer, antidiabetic, anti-inflammatory, and antimicrobial purposes. AIM OF THE STUDY: Our previous studies have demonstrated the promising potential of Prosopis Juliflora leaves methanol extract (PJLME) against breast cancer, and suggested its possible integration as a complementary medicine for the effective management of breast cancer. However, evidence against how PJLME mechanistically target the cancer proliferative pathways and other targets is poorly understood. The basic aim of the present study was to understand the anti-melanoma potential of PJLME against B16f10 cells with possible mechanisms of action. MATERIALS AND METHODS: MTT assay was used to determine cell viability. Wound and transwell migration assay was performed to check migration potential of cells after PJLME treatment, while clonogenic assay was carried out to understand its colony inhibition actvity. Flow cytometry was used to perform annexin V/PI assay (apoptosis assay), ROS assay, cell cycle analysis. In-vitro angiogenesis assay was performed to check formation of capillary like vascular structure after PJLME treatment. Apoptotic genes, signaling pathways markers, EMT markers and stem cell markers were determined by western blotting. In-vivo BALB/C mice xenograft model study was performed to check the effect of PJLME on in-vivo melanoma tumor growth. RESULTS: The experimental outcome of the present study has clearly demonstrated the inhibition of growth, migration, invasion, colony formation and apoptosis inducing potential of PJLME against mouse melanoma cancer cells. Treatment of B16F10 melanoma cells with PJLME resulted in arrest of cell cycle at G0/G1 phase. Annexin V-FITC/PI assay confirmed the apoptosis inducing potential of PJLME in B16F10 and A375 melanoma cells. Furthermore, Western blot experiments confirmed that the treatment of PJLME downregulates the expression of anti-apoptotic gene like Bcl2 and increase the expression profile of pro-apoptotic genes like Bax, Bad, and Bak in B16F10 melanoma cells. HUVEC (Human umbilical vein endothelial cells) tube formation assay clearly demonstrated the anti-angiogenic potential of PJLME. The study also revealed that PJLME has potential to inhibit the Akt and Erk signaling pathways which are participating in cancer cell proliferation, migration, invasion etc. The outcome of qRT-PCR and immunoblotting analysis clearly unveiled that PJLME treatment leads to downregulation of epithelial-mesenchymal transition (EMT) as well as stem cell markers. Finally, the in-vivo animal xenograft model study also revealed the anti-melanoma potential of PJLME by significantly inhibiting the B16F10 melanoma tumor growth in BALB/c mice model. The LC-ESI-MS/MS analysis of PJLME showed the presence of variety of bioactive molecules associated with anticancer effects. CONCLUSION: The outcome of the present investigation clearly demonstrated the anti-melanoma potential of PJLME against B16f10 melanoma cells. PJLME can be explored as an adjuvant or complementary therapy against melanoma cancer, however further studies are required to understand the clinical efficacy of PJLME. Nevertheless, it can be further explored as a promising resource for identification of novel anticancer candidate drug.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Melanoma , Prosopis , Animals , Mice , Humans , Female , Epithelial-Mesenchymal Transition , Endothelial Cells/metabolism , Tandem Mass Spectrometry , Cell Line, Tumor , Mice, Inbred BALB C , Melanoma/drug therapy , Signal Transduction , Antineoplastic Agents/pharmacology , Cell Proliferation , Apoptosis , Breast Neoplasms/drug therapy , Stem Cells/metabolism , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...