Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 649: 918-928, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37392682

ABSTRACT

The photocatalytic reduction of CO2 under solar irradiation is an ideal approach to mitigating global warming, and reducing aqueous forms of CO2 that interact strongly with a catalyst (e.g., HCO3-) is a promising strategy to expedite such reductions. This study uses Pt-deposited graphene oxide dots as a model photocatalyst to elucidate the mechanism of HCO3- reduction. The photocatalyst steadily catalyzes the reduction of an HCO3- solution (at pH = 9) containing an electron donor under 1-sun illumination over a period of 60 h to produce H2 and organic compounds (formate, methanol, and acetate). H2 is derived from solution-contained H2O, which undergoes photocatalytic cleavage to produce •H atoms. Isotopic analysis reveals that all of the organics formed via interactions between HCO3- and •H. This study proposes mechanistic steps, which are governed by the reacting behavior of the •H, to correlate the electron transfer steps and product formation of this photocatalysis. This photocatalysis achieves overall apparent quantum efficiency of 27% in the formation of reaction products under monochromatic irradiation at 420 nm. This study demonstrates the effectiveness of aqueous-phase photocatalysis in converting aqueous CO2 into valuable chemicals and the importance of H2O-derived •H in governing the product selectivity and formation kinetics.

2.
ACS Appl Mater Interfaces ; 11(21): 19087-19095, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31062573

ABSTRACT

The influences of chemical and electronic structures on the photophysical properties of polymeric carbon nitrides (PCNs) photocatalysts, which govern the microscopic mechanisms of the superior photocatalytic activity under visible-light irradiation, have been resolved in this work. Time-resolved photoluminescence and in situ electron paramagnetic resonance measurements indicate that the photoexcited electrons in the fractured PCNs swiftly transfer to the C2p-localized states where the trapped photoelectrons exhibit longer lifetime compared to those in the ordinary PCNs. Moreover, the structure deviation at the carbon (Cb) atoms around the bridging sites of heptazine ring units, where trapped photoelectrons are localized, has been determined in the fractured PCNs based on the 13C solid-state nuclear magnetic resonance spectra and the density functional theory calculations. Accordingly, the formation of fractured PCNs by breaking the in-plane hydrogen bonds at a high temperature is a promising strategy for the enhancement of photocatalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...