Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 35(1): 17-20, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17035602

ABSTRACT

Human cytosolic sulfotransferase SULT1E1 catalyzes the sulfation of endogenous estrogens as well as xenobiotic estrogen-like chemicals. This reaction increases the water solubility of the molecule, which may affect its cellular distribution and biological activity. This could alter estrogen signaling to the estrogen receptor in human estrogen receptor-positive cells. The current work characterized the cellular distribution of SULT1E1 in the human embryonic kidney 293 (HEK293) cell line using green fluorescent protein (GFP) tagging and immunochemistry methods. The GFP-tagged recombinant SULT1E1 protein was expressed and localized in the cytoplasm of HEK293 cells. By using a commercial anti-SULT1E1 peptide antibody, a 35.7-kDa protein was detected in HEK293 cells via Western blot. The molecular mass of the protein detected suggested that it may be related to native SULT1E1 protein. However, reverse transcription-polymerase chain reaction (RT-PCR) with gene-specific primers could not confirm the presence of the SULT1E1 transcript in the total RNA sample of HEK293 cells. The discrepancy between protein and transcript data could be due to the instability of SULT1E1 mRNA or the specificity of the anti-SULT1E1 antibody used. In the present work, RT-PCR analysis with gene-specific primers also identified a transcript fragment of human estrogen-related receptor gamma. Future studies on the functional relationship between estrogen-related receptors and sulfotransferases are expected to provide additional insights into the physiological and toxicological roles of human estrogen sulfotransferases.


Subject(s)
Sulfotransferases/metabolism , Cell Line , Cytoplasm/metabolism , Green Fluorescent Proteins/metabolism , Humans , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Estrogen/genetics , Recombinant Fusion Proteins/metabolism , Sulfotransferases/genetics
2.
Indian J Exp Biol ; 44(3): 171-82, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16538854

ABSTRACT

Sulfoconjugation (Sulfation or Sulfonation) is an important reaction in the phase II biotransformation of a wide number of endogenous and foreign chemicals, including: drugs, toxic chemicals, hormones, and neurotransmitters. The reaction is catalyzed by the members of the cytosolic sulfotransferase (SULT) superfamily, consisting of ten functional genes in humans. Sulfation reaction in living cells is reversed by sulfatase, which hydrolyses the sulfonated conjugates. It has a major role in regulating the endocrine status of an individual by modulating the activity of steroid hormones, their biosynthesis, and the metabolism of catecholamines. Sulfonation is a key reaction in the body's 'chemical' defense against xenobiotics. Although the primary function of sulfoconjugation is to permit detoxification of the compound, it also results in the activation of chemical procarcinogens, such as certain dietary and environmental agents into carcinogens. In this review, we summarize our current understanding of the structure of mammalian cytosolic sulfotransferases and their role in human steroid associated cancers and in the bioactivation of chemical carcinogens.


Subject(s)
Cytosol/enzymology , Sulfotransferases/metabolism , Animals , Humans , Neoplasms/enzymology , Steroids/metabolism , Substrate Specificity , Sulfotransferases/chemistry , Terminology as Topic
3.
Pharmacol Ther ; 110(1): 103-16, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16356551

ABSTRACT

The large-conductance, calcium-activated potassium channels (BK, also termed BK(Ca), Slo, or MaxiK) distributed in both excitable and non-excitable cells are involved in many cellular functions such as action potential repolarization; neuronal excitability; neurotransmitter release; hormone secretion; tuning of cochlear hair cells; innate immunity; and modulation of the tone of vascular, airway, uterine, gastrointestinal, and urinary bladder smooth muscle tissues. Because of their high conductance, activation of BK channels has a strong effect on membrane potential. BK channels differ from all other potassium (K(+)) channels due to their high sensitivity to both intracellular calcium (Ca(2+)) concentrations and voltage. These features make BK channels ideal negative feedback regulators in many cell types by decreasing voltage-dependent Ca(2+) entry through membrane potential hyperpolarization. The current review aims to give a comprehensive understanding of the structure and molecular biology of BK channels and their relevance to various pathophysiological conditions. The review will also focus on the therapeutic potential and pharmacology of the various BK channel activators and blockers.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/chemistry , Large-Conductance Calcium-Activated Potassium Channels/physiology , Animals , Electrophysiology , Humans , Large-Conductance Calcium-Activated Potassium Channels/agonists , Large-Conductance Calcium-Activated Potassium Channels/antagonists & inhibitors , Potassium Channel Blockers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...