Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 248(0): 318-326, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37781864

ABSTRACT

One of the most important challenges facing long cycle life Li-O2 batteries is solvent degradation. Even the most stable ethers, such as CH3O(CH2CH2O)CH3, degrade to form products including Li2CO3, which accumulates in the pores of the gas diffusion electrode on cycling leading to polarisation and capacity fading. In this work, we examine the build-up and distribution of Li2CO3 within the porous gas diffusion electrode during cycling and its link to the cell failure. We also demonstrate that the removal of Li2CO3 by a redox mediator can partially recover the cell performance and extend the cycle life of a Li-O2 battery.

2.
Nat Chem ; 15(7): 1022-1029, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37264102

ABSTRACT

Although Li-air rechargeable batteries offer higher energy densities than lithium-ion batteries, the insulating Li2O2 formed during discharge hinders rapid, efficient re-charging. Redox mediators are used to facilitate Li2O2 oxidation; however, fast kinetics at a low charging voltage are necessary for practical applications and are yet to be achieved. We investigate the mechanism of Li2O2 oxidation by redox mediators. The rate-limiting step is the outer-sphere one-electron oxidation of Li2O2 to LiO2, which follows Marcus theory. The second step is dominated by LiO2 disproportionation, forming mostly triplet-state O2. The yield of singlet-state O2 depends on the redox potential of the mediator in a way that does not correlate with electrolyte degradation, in contrast to earlier views. Our mechanistic understanding explains why current low-voltage mediators (<+3.3 V) fail to deliver high rates (the maximum rate is at +3.74 V) and suggests important mediator design strategies to deliver sufficiently high rates for fast charging at potentials closer to the thermodynamic potential of Li2O2 oxidation (+2.96 V).

SELECTION OF CITATIONS
SEARCH DETAIL
...