Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gynecol Endocrinol ; 39(1): 2172155, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36809792

ABSTRACT

OBJECTIVE: Granular cells (GCs) are involved in polycystic ovarian syndrome (PCOS) progression. MicroRNA (miR)-23a downregulation is linked to PCOS development. Therefore, this research explored the influences of miR-23a-3p on GC proliferation and apoptosis in PCOS. METHODS: Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to examine miR-23a-3p and HMGA2 expression in GCs of patients with PCOS. Then, miR-23a-3p and/or HMGA2 expression was altered in GCs (KGN and SVOG), after which miR-23a-3p, HMGA2, Wnt2, and ß-catenin expression, GC viability, and GC apoptosis were measured by RT-qPCR and western blotting, MTT assay, and flow cytometry, respectively. A dual-luciferase reporter gene assay was utilized to assess the targeting relationship between miR-23a-3p and HMGA2. Finally, GC viability and apoptosis were tested after the combined treatment of miR-23a-3p mimic and pcDNA3.1-HMGA2. RESULTS: miR-23a-3p was poorly expressed but HMGA2 was overexpressed in GCs of patients with PCOS. Mechanistically, HMGA2 was negatively targeted by miR-23a-3p in GCs. Furthermore, miR-23a-3p inhibition or HMGA2 upregulation elevated viability and reduced apoptosis of KGN and SVOG cells, along with increased Wnt2 and ß-catenin expression. In KNG cells, HMGA2 overexpression abrogated the impacts of miR-23a-3p overexpression on GC viability and apoptosis. CONCLUSIONS: Collectively, miR-23a-3p decreased HMGA2 expression to block the Wnt/ß-catenin pathway, thereby depressing viability and facilitating apoptosis of GCs.


Subject(s)
HMGA2 Protein , MicroRNAs , Polycystic Ovary Syndrome , Female , Humans , Apoptosis , beta Catenin/genetics , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , HMGA2 Protein/metabolism
2.
Bosn J Basic Med Sci ; 21(1): 81-92, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32343942

ABSTRACT

MiR-145 is reported to facilitate inflammation and is also associated with unsuccessful embryonic implantation. Whether miR-145 mediates inflammatory response underlying hydrosalpinx-induced defective endometrial receptivity (ER) remains unclear, and this study attempted to clarify this point. Endometrium samples were collected from hydrosalpinx patients (case, n = 243) and patients with tubal patency/obstruction (control, n = 187). The peripheral blood samples of cases and controls were collected to determine the genotypes of miR-145 SNPs. The value of miR-145 expression in the diagnosis and prognostic estimation of hydrosalpinx was assessed using ROC curve and regression analysis, respectively. Lipopolysaccharide (LPS) cell model was established with endometrial cells, and cells were transfected with miR-145 mimic, inhibitor, or negative control. MiR-145 and cytokine levels were quantified by quantitative reverse transcription PCR or western blot. MiR-145 expression was significantly higher in hydrosalpinx compared to control group, and high miR-145 expression was significantly associated with moderate/severe tube lesion, high pulsatility index (>1.06), and high resistance index (>0.61) in hydrosalpinx patients. ROC curve analysis indicated that monitoring miR-145 expression may be useful for the diagnosis of hydrosalpinx (AUC = 0.704). A alleles of rs41291957 (G>A) and rs353292 (G>A) were significantly associated with an increased risk of hydrosalpinx compared to G allele (p < 0.05), yet the mutant allele of rs353291 (A>G) and rs4705343 (T>C) significantly reduced susceptibility to hydrosalpinx compared to the wild type allele. Treatments with miR-145 mimic and LPS in endometrial cells significantly increased the levels of transforming growth factor-ß1, tumor necrosis factor -α, interleukin (IL)-6, and IL-8 compared to negative control, while treatment with miR-145 inhibitor decreased the cytokine levels. In conclusion, abnormally expressed miR-145 may be involved in hydrosalpinx-induced ER defects by regulating the inflammatory response.


Subject(s)
Endometrium/metabolism , Endometrium/pathology , Fallopian Tube Diseases/genetics , MicroRNAs/genetics , Adult , Biomarkers/metabolism , Cells, Cultured , Diagnosis, Differential , Endometrium/cytology , Fallopian Tube Diseases/diagnosis , Female , Genotype , Haplotypes , Humans , Polymorphism, Single Nucleotide , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...