Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(22)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36431499

ABSTRACT

In this paper, the shear strength of adhesively bonded single-lap joints were experimentally and numerically investigated. Based on the validated simulation, the effects of lap length, adhesive layer thickness, adhesive layer shape, adhesive layer overflow length, and laminate lay-up on the shear strength of adhesively bonded single-lap joints were studied. The load-displacement curves and shear strength under different parameters were compared. It was shown that the shear strength of single-lap joints gradually decreases with the increase of lap length and adhesive layer thickness, which were 53.83% and 16.15%, respectively. Considering the potential condition in fabrication, the adhesive layer shape and adhesive layer overflow length were also investigated. The adhesive with normal and triangle shape owned the comparable shear strength, which was higher than the arc one. The shear strength increased by 19.37% from 18.43 MPa to 22.00 MPa with increasing the adhesive layer overflow length to 50% of lap length. It was beneficial for shear strength to increase the adhesive layer overflow length to 50% of lap length. Among the selected four lay-ups, [0]16s had the highest shear strength, which was nearly 3 times greater than the one of [90]16s. In the real process preparation, increasing the number of 0° layers, selecting the appropriate lap length and thickness of the adhesive layer, and controlling the shape and length of the adhesive layer overflow are of great help to improve the tensile shear strength of the single-lap glue joint.

2.
Materials (Basel) ; 15(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408035

ABSTRACT

The composite-material laminate structure will inevitably encounter connection problems in use. Among them, mechanical connections are widely used in aerospace, automotive and other fields because of their high connection efficiency and reliable connection performance. Milling parameters are important for the opening quality. In this paper, continuous-glass-fiber-reinforced-polypropylene (GFRPP) laminates were chosen to investigate the effects of different cutters and process parameters on the hole quality. The delamination factor and burr area were taken as the index to characterize the opening quality. After determining the optimal milling tool, the process window was obtained according to the appearance of the milling hole. In the selected process parameter, the maximum temperature did not reach the PP melting temperature. The best hole quality was achieved when the spindle speed was 18,000 r/min and the feed speed was 1500 mm/min with the corn milling cutter.

SELECTION OF CITATIONS
SEARCH DETAIL
...