Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Bioelectrochemistry ; 132: 107432, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31918056

ABSTRACT

The decrease in killing sensitivity of the cell membrane to microsecond pulse electric fields (µs-PEFs) is ascribed mainly to the aberrant morphology of cancer cells, with clear statistical correlations observed between cell size and shape defects and the worsening of the electrical response to the PEF. In this paper, nanosecond pulsed electric fields (ns-PEFs) inducing the nucleus effect and µs-PEFs targeting the cell membrane were combined to enhance destruction of irregular cells. The fluorescence dissipation levels of the nuclear membrane and cell membrane exposed to the µs, ns, and ns + µs pulse protocols were measured and compared, and a dynamic electroporation model of irregular cells was established by the finite element software COMSOL. The results suggest that the cell membrane disruption induced by µs-PEFs is worse for extremely irregular cells and depends strongly on cellular morphology. However, the nuclear membrane disruption induced by ns-PEFs does not scale with irregularity, suggesting the use of a combination of ns-PEFs with µs-PEFs to target the nuclear and cell membranes. We demonstrate that ns + µs pulses can significantly enhance the fluorescence dissipation of the cell and nuclear membranes. Overall, our findings indicate that ns + µs pulses may be useful in the effective killing of irregular cells.


Subject(s)
Electricity , A549 Cells , Cell Membrane/metabolism , Finite Element Analysis , Fluorescence , Humans , Nuclear Envelope/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...