Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 997672, 2022.
Article in English | MEDLINE | ID: mdl-36267565

ABSTRACT

Background: Increased serum adenosine deaminase (ADA) levels have been shown to be involved in metabolic abnormalities and immune disequilibrium, which may in turn contribute to inflammatory diseases. This study aimed to determine whether increased serum ADA levels are related to diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2D). Methods: This study was part of a series exploring the potential risks for DPN. All patients received DPN assessment based on neuropathic symptoms, neuropathic signs, and nerve conduction studies to calculate the composite Z score of nerve latency, amplitude and conduction velocity (NCV). DPN was confirmed by both at least a presentation of neuropathic symptoms/signs and an abnormal nerve conduction index. Serum ADA levels were also synchronously detected. Results: A total of 384 eligible patients with T2D were recruited for this study, and 24.5% (n=94) were determined to have DPN. Increases in serum ADA levels were closely associated with increases in composite Z score of latency (ß=0.263, t=5.273, p<0.001) and decreases in composite Z score of amplitude (ß=-0.126, t=-2.352, p=0.019) and NCV (ß=-0.201, t=-3.841, p<0.001) after adjusting for other clinical covariates. Moreover, each 5 U/L increase in serum ADA levels was associated with a 1.781-fold increased adjusted odds ratio of having DPN (95% confidence interval: 1.271-2.495). Furthermore, the optimal cut-off value of serum ADA levels to discriminate DPN was ≥14.2 U/L (sensitivity=59.57%, specificity=75.52% and Youden index=0.351) after analysis by receiver operating characteristic curve. Conclusions: Increased serum ADA levels may be a potential risk factor for DPN in patients with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Neuropathies , Humans , Adenosine Deaminase , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/etiology , ROC Curve
2.
Diabetol Metab Syndr ; 14(1): 142, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167619

ABSTRACT

BACKGROUND: Increased serum carcinoembryonic antigen (CEA) levels are reported to be associated with various metabolic and inflammatory diseases. This study assessed whether high-normal serum CEA is related to diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2D). METHODS: All subjects received DPN assessment based on neuropathic symptoms, neuropathic signs, and nerve conduction studies to calculate composite Z scores of nerve latency, amplitude and conduction velocity (NCV). DPN was confirmed by both at least a presentation of neuropathic symptoms/signs and an abnormal nerve conduction index. Serum CEA levels and other clinical indices were also synchronously detected. Multivariable linear regression analyses were used to determine the independent effects of serum CEA levels on nerve conduction indices, multivariable logistic regression analyses were used to determine the independent impact of CEA levels on the risk of DPN, and receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic capability of CEA levels to discriminate DPN. RESULTS: We ultimately recruited 402 eligible subjects with normal ranges of serum CEA for this study, and 25.4% (n = 102) were determined to have DPN. After adjusting for other clinical covariates, serum CEA levels were independently associated with the composite Z score for latency (ß = 0.132, t = 2.330, p = 0.021), amplitude (ß = - 0.164, t = - 2.838, p = 0.005) and NCV (ß = - 0.210, t = - 3.662, p < 0.001). Moreover, the prevalence of DPN in the first, second, third and fourth quartiles of CEA level was 12.9%, 19.0%, 29.4% and 40.4%, respectively (p for trend < 0.001); the corresponding adjusted odds ratios and 95% CIs for DPN in CEA quartiles were 1, 1.47 (0.45-4.82), 1.72 (0.54-5.53) and 4.58 (1.39-15.06), respectively. Furthermore, the optimal cut-off value of high-normal serum CEA to discriminate DPN was ≥ 2.66 ng/mL, with a Youden index of 0.28, sensitivity of 66.67% and specificity of 61.00%. CONCLUSIONS: Increased serum CEA levels within the normal range are closely linked to dysfunction of peripheral nerve conduction and the risk of DPN, and high-normal serum CEA levels are a potential risk factor for DPN in T2D.

3.
Front Endocrinol (Lausanne) ; 13: 930271, 2022.
Article in English | MEDLINE | ID: mdl-36082076

ABSTRACT

Background: Increased plasma D-dimer levels have been reported to be associated with a range of adverse health outcomes. This study aimed to determine whether plasma D-dimer is connected to diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes (T2D). Methods: This study was part of a series exploring the potential risks for DPN. All patients were questioned for neurologic symptoms, examined for neurologic signs, and received nerve conduction studies to collect nerve action potential onset latency, amplitude, and nerve conduction velocity (NCV). Composite Z scores of latency, amplitude, and NCV were calculated. DPN was confirmed as both at least a neurologic symptom/sign and an abnormality of nerve conduction studies. Coagulation function indices, such as plasma D-dimer levels, were also synchronously detected. Results: We finally recruited 393 eligible patients for this study, of whom 24.7% (n = 97) were determined to have DPN. The plasma D-dimer level was found to be closely associated with the composite Z score of latency, amplitude, and NCV after adjusting for other coagulation function indices and clinical covariates (latency: ß = 0.134, t = 2.299, p = 0.022; amplitude: ß = -0.138, t = -2.286, p = 0.023; NCV: ß = -0.139, t = -2.433, p = 0.016). Moreover, the prevalence of DPN in the first, second, third, and fourth quartiles (Q1, Q2, Q3, and Q4) of the D-dimer level was 15.2%, 15.9%, 26.4%, and 42.7%, respectively (p for trend < 0.001). The corresponding adjusted odds ratios and 95% CIs for DPN in D-dimer quartiles were 1, 0.79 (0.21-2.99), 1.75 (0.49-6.26), and 5.17 (1.38-19.42), respectively. Furthermore, the optimal cutoff value of the plasma D-dimer level to discriminate DPN was ≥0.22 mg/L (sensitivity = 67.01%, specificity = 58.78%, and Youden index = 0.26) after analysis by the receiver operating characteristic curve. Conclusions: Increased plasma D-dimer levels may be a promising indicator for DPN in patients with T2D.


Subject(s)
Diabetic Neuropathies , Fibrin Fibrinogen Degradation Products , Diabetes Mellitus, Type 2 , Diabetic Neuropathies/diagnosis , Fibrin Fibrinogen Degradation Products/chemistry , Humans , Prognosis , ROC Curve
4.
Diabetol Metab Syndr ; 14(1): 24, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35093139

ABSTRACT

BACKGROUND: Plasma 1,5-anhydro-D-glucitol (1,5-AG) may be a easily accessible marker for glycemic variability under mild-to-moderate hyperglycemia. The present study was to investigate the association of 1,5-AG with peripheral nerve function and diabetic peripheral neuropathy (DPN) in patients with T2D and mild-to-moderate hyperglycemia. METHODS: We recruited 574 T2D patients with mild-to-moderate hyperglycemia (HbA1c < 8.0%) for this cross-sectional study, with plasma 1,5-AG synchronously detected. All patients were questioned for neurologic symptoms, examined for neurologic signs and screened for peripheral nerve function. Nerve function included the latency, amplitude and nerve conduction velocity (NCV) of limbs nerves (median, ulnar nerve, common peroneal, superficial peroneal, tibial and sural nerve). Besides, composite Z-score of latency, amplitude and NCV were calculated. DPN was identified as both at least a neurologic symptom/sign and an abnormality of peripheral nerve function. RESULTS: Among the recruited patients, 23.9% (n = 137) were identified to be with DPN, and the prevalence of DPN decreased from 36.6%, 24.5%, 21.2%, 13.3% from first (Q1), second (Q2), and third (Q3) to fourth quartile (Q4) of 1,5-AG. Moreover, multivariable linear regression analysis showed 1,5-AG was associated with composite Z-score of nerve latency (ß = - 0.18, t = - 3.84, p < 0.001), amplitude(ß = 0.26, t = 5.35, p < 0.001) and NCV (ß = 0.24, t = 5.61, p < 0.001), respectively. Furthermore, compared to Q4 of 1,5-AG as reference, the adjusted odds ratios and 95% CIs for DPN of Q3, Q2, and Q1 were 1.29(0.59-2.81), 1.85(0.87-3.97), and 2.72(1.16-6.34), respectively. Additionally, receiver operating characteristic analysis revealed that optimal cutoff value of 1,5-AG to indicate DPN was ≤ 30.8 µmol/L, with sensitivity of 56.20% and specificity of 66.36%. CONCLUSIONS: Low plasma 1,5-AG is closely associated with impaired peripheral nerve function and DPN in T2D patients under mild-to-moderate hyperglycemia.

5.
Diabetol Metab Syndr ; 13(1): 102, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34556157

ABSTRACT

BACKGROUND: Deterioration of sleep quality has been reported to contribute to the incidence of diabetes and may be responsible for glycemic status in diabetes. The present study explored the relationship between sleep quality and glycemic variability in patients with type 2 diabetes (T2D). METHODS: We recruited 111 patients with T2D for this cross-sectional study. Each patient underwent flash glucose monitoring for 14 days to obtain glycemic variability parameters, such as standard deviation of glucose (SD), coefficient of variation of glucose (CV), mean amplitude of glycemic excursions (MAGE), mean of daily differences (MODD), and time in glucose range of 3.9-10 mmol/L (TIR3.9-10). After 14 days of flash glucose monitoring, each patient received a questionnaire on the Pittsburgh Sleep Quality Index (PSQI) to evaluate subjective sleep quality. HbA1c was also collected to assess average glucose. RESULTS: HbA1c was comparable among the subgroups of PSQI score tertiles. Across ascending tertiles of PSQI scores, SD, CV and MAGE were increased, while TIR3.9-10 was decreased (p for trend < 0.05), but not MODD (p for trend = 0.090). Moreover, PSQI scores were positively correlated with SD, CV, MODD and MAGE (r = 0.322, 0.361, 0.308 and 0.354, respectively, p < 0.001) and were inversely correlated with TIR3.9-10 (r = - 0.386, p < 0.001). After adjusting for other relevant data by multivariate linear regression analyses, PSQI scores were independently responsible for SD (ß = 0.251, t = 2.112, p = 0.041), CV (ß = 0.286, t = 2.207, p = 0.033), MAGE (ß = 0.323, t = 2.489, p = 0.018), and TIR3.9-10 (ß = - 0.401, t = - 3.930, p < 0.001) but not for MODD (ß = 0.188, t = 1.374, p = 0.177). CONCLUSIONS: Increased glycemic variability assessed by flash glucose monitoring was closely associated with poor subjective sleep quality evaluated by the PSQI in patients with T2D.

SELECTION OF CITATIONS
SEARCH DETAIL
...