Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39001189

ABSTRACT

The identification of safflower filament targets and the precise localization of picking points are fundamental prerequisites for achieving automated filament retrieval. In light of challenges such as severe occlusion of targets, low recognition accuracy, and the considerable size of models in unstructured environments, this paper introduces a novel lightweight YOLO-SaFi model. The architectural design of this model features a Backbone layer incorporating the StarNet network; a Neck layer introducing a novel ELC convolution module to refine the C2f module; and a Head layer implementing a new lightweight shared convolution detection head, Detect_EL. Furthermore, the loss function is enhanced by upgrading CIoU to PIoUv2. These enhancements significantly augment the model's capability to perceive spatial information and facilitate multi-feature fusion, consequently enhancing detection performance and rendering the model more lightweight. Performance evaluations conducted via comparative experiments with the baseline model reveal that YOLO-SaFi achieved a reduction of parameters, computational load, and weight files by 50.0%, 40.7%, and 48.2%, respectively, compared to the YOLOv8 baseline model. Moreover, YOLO-SaFi demonstrated improvements in recall, mean average precision, and detection speed by 1.9%, 0.3%, and 88.4 frames per second, respectively. Finally, the deployment of the YOLO-SaFi model on the Jetson Orin Nano device corroborates the superior performance of the enhanced model, thereby establishing a robust visual detection framework for the advancement of intelligent safflower filament retrieval robots in unstructured environments.

2.
Sensors (Basel) ; 24(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065881

ABSTRACT

Addressing the limitations of current railway track foreign object detection techniques, which suffer from inadequate real-time performance and diminished accuracy in detecting small objects, this paper introduces an innovative vision-based perception methodology harnessing the power of deep learning. Central to this approach is the construction of a railway boundary model utilizing a sophisticated track detection method, along with an enhanced UNet semantic segmentation network to achieve autonomous segmentation of diverse track categories. By employing equal interval division and row-by-row traversal, critical track feature points are precisely extracted, and the track linear equation is derived through the least squares method, thus establishing an accurate railway boundary model. We optimized the YOLOv5s detection model in four aspects: incorporating the SE attention mechanism into the Neck network layer to enhance the model's feature extraction capabilities, adding a prediction layer to improve the detection performance for small objects, proposing a linear size scaling method to obtain suitable anchor boxes, and utilizing Inner-IoU to refine the boundary regression loss function, thereby increasing the positioning accuracy of the bounding boxes. We conducted a detection accuracy validation for railway track foreign object intrusion using a self-constructed image dataset. The results indicate that the proposed semantic segmentation model achieved an MIoU of 91.8%, representing a 3.9% improvement over the previous model, effectively segmenting railway tracks. Additionally, the optimized detection model could effectively detect foreign object intrusions on the tracks, reducing missed and false alarms and achieving a 7.4% increase in the mean average precision (IoU = 0.5) compared to the original YOLOv5s model. The model exhibits strong generalization capabilities in scenarios involving small objects. This proposed approach represents an effective exploration of deep learning techniques for railway track foreign object intrusion detection, suitable for use in complex environments to ensure the operational safety of rail lines.

SELECTION OF CITATIONS
SEARCH DETAIL