Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927811

ABSTRACT

Accurate and automated segmentation of brain tissue images can significantly streamline clinical diagnosis and analysis. Manual delineation needs improvement due to its laborious and repetitive nature, while automated techniques encounter challenges stemming from disparities in magnetic resonance imaging (MRI) acquisition equipment and accurate labeling. Existing software packages, such as FSL and FreeSurfer, do not fully replace ground truth segmentation, highlighting the need for an efficient segmentation tool. To better capture the essence of cerebral tissue, we introduce nnSegNeXt, an innovative segmentation architecture built upon the foundations of quality assessment. This pioneering framework effectively addresses the challenges posed by missing and inaccurate annotations. To enhance the model's discriminative capacity, we integrate a 3D convolutional attention mechanism instead of conventional convolutional blocks, enabling simultaneous encoding of contextual information through the incorporation of multiscale convolutional features. Our methodology was evaluated on four multi-site T1-weighted MRI datasets from diverse sources, magnetic field strengths, scanning parameters, temporal instances, and neuropsychiatric conditions. Empirical evaluations on the HCP, SALD, and IXI datasets reveal that nnSegNeXt surpasses the esteemed nnUNet, achieving Dice coefficients of 0.992, 0.987, and 0.989, respectively, and demonstrating superior generalizability across four distinct projects with Dice coefficients ranging from 0.967 to 0.983. Additionally, extensive ablation studies have been implemented to corroborate the effectiveness of the proposed model. These findings represent a notable advancement in brain tissue analysis, suggesting that nnSegNeXt holds the promise to significantly refine clinical workflows.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927845

ABSTRACT

Multivariate pattern analysis (MVPA) has played an extensive role in interpreting brain activity, which has been applied in studies with modalities such as functional Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG) and Electroencephalography (EEG). The advent of wearable MEG systems based on optically pumped magnetometers (OPMs), i.e., OP-MEG, has broadened the application of bio-magnetism in the realm of neuroscience. Nonetheless, it also raises challenges in temporal decoding analysis due to the unique attributes of OP-MEG itself. The efficacy of decoding performance utilizing multimodal fusion, such as MEG-EEG, also remains to be elucidated. In this regard, we investigated the impact of several factors, such as processing methods, models and modalities, on the decoding outcomes of OP-MEG. Our findings indicate that the number of averaged trials, dimensionality reduction (DR) methods, and the number of cross-validation folds significantly affect the decoding performance of OP-MEG data. Additionally, decoding results vary across modalities and fusion strategy. In contrast, decoder type, resampling frequency, and sliding window length exert marginal effects. Furthermore, we introduced mutual information (MI) to investigate how information loss due to OP-MEG data processing affect decoding accuracy. Our study offers insights for linear decoding research using OP-MEG and expand its application in the fields of cognitive neuroscience.

3.
Neuroimage ; 296: 120661, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38838840

ABSTRACT

Optically pumped magnetometer magnetoencephalography (OPM-MEG) holds significant promise for clinical functional brain imaging due to its superior spatiotemporal resolution. However, effectively suppressing metallic artifacts, particularly from devices such as orthodontic braces and vagal nerve stimulators remains a major challenge, hindering the wider clinical application of wearable OPM-MEG devices. A comprehensive analysis of metal artifact characteristics from time, frequency, and time-frequency perspectives was conducted for the first time using an OPM-MEG device in clinical medicine. This study focused on patients with metal orthodontics, examining the modulation of metal artifacts by breath and head movement, the incomplete regular sub-Gaussian distribution, and the high absolute power ratio in the 0.5-8 Hz band. The existing metal artifact suppression algorithms applied to SQUID-MEG, such as fast independent component analysis (FastICA), information maximization (Infomax), and algorithms for multiple unknown signal extraction (AMUSE), exhibit limited efficacy. Consequently, this study introduced the second-order blind identification (SOBI) algorithm, which utilized multiple time delays for the component separation of OPM-MEG measurement signals. We modified the time delays of the SOBI method to improve its efficacy in separating artifact components, particularly those in the ultralow frequency range. This approach employs the frequency-domain absolute power ratio, root mean square (RMS) value, and mutual information methods to automate the artifact component screening process. The effectiveness of this method was validated through simulation experiments involving four subjects in both resting and evoked experiments. In addition, the proposed method was also validated by the actual OPM-MEG evoked experiments of three subjects. Comparative analyses were conducted against the FastICA, Infomax, and AMUSE algorithms. Evaluation metrics included normalized mean square error, normalized delta band power error, RMS error, and signal-to-noise ratio, demonstrating that the proposed method provides optimal suppression of metal artifacts. This advancement holds promise for enhancing data quality and expanding the clinical applications of OPM-MEG.


Subject(s)
Artifacts , Magnetoencephalography , Humans , Magnetoencephalography/methods , Magnetoencephalography/instrumentation , Adult , Female , Male , Algorithms , Metals , Signal Processing, Computer-Assisted , Young Adult , Brain/physiology
4.
Comput Methods Programs Biomed ; 254: 108292, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38936152

ABSTRACT

BACKGROUND AND OBJECTIVES: The exploration of various neuroimaging techniques have become focal points within the field of neuroscience research. Magnetoencephalography based on optically pumped magnetometers (OPM-MEG) has shown significant potential to be the next generation of functional neuroimaging with the advantages of high signal intensity and flexible sensor arrangement. In this study, we constructed a 31-channel OPM-MEG system and performed a preliminary comparison of the temporal and spatial relationship between magnetic responses measured by OPM-MEG and blood-oxygen-level-dependent signals detected by functional magnetic resonance imaging (fMRI) during a grasping task. METHODS: For OPM-MEG, the ß-band (15-30 Hz) oscillatory activities can be reliably detected across multiple subjects and multiple session runs. To effectively localize the inhibitory oscillatory activities, a source power-spectrum ratio-based imaging method was proposed. This approach was compared with conventional source imaging methods, such as minimum norm-type and beamformer methods, and was applied in OPM-MEG source analysis. Subsequently, the spatial and temporal responses at the source-level between OPM-MEG and fMRI were analyzed. RESULTS: The effectiveness of the proposed method was confirmed through simulations compared to benchmark methods. Our demonstration revealed an average spatial separation of 10.57 ± 4.41 mm between the localization results of OPM-MEG and fMRI across four subjects. Furthermore, the fMRI-constrained OPM-MEG localization results indicated a more focused imaging extent. CONCLUSIONS: Taken together, the performance exhibited by OPM-MEG positions it as a potential instrument for functional surgery assessment.

5.
PLoS One ; 19(5): e0297989, 2024.
Article in English | MEDLINE | ID: mdl-38781184

ABSTRACT

In light of the exponential growth in information volume, the significance of graph data has intensified. Graph clustering plays a pivotal role in graph data processing by jointly modeling the graph structure and node attributes. Notably, the practical significance of multi-view graph clustering is heightened due to the presence of diverse relationships within real-world graph data. Nonetheless, prevailing graph clustering techniques, predominantly grounded in deep learning neural networks, face challenges in effectively handling multi-view graph data. These challenges include the incapability to concurrently explore the relationships between multiple view structures and node attributes, as well as difficulties in processing multi-view graph data with varying features. To tackle these issues, this research proposes a straightforward yet effective multi-view graph clustering approach known as SLMGC. This approach uses graph filtering to filter noise, reduces computational complexity by extracting samples based on node importance, enhances clustering representations through graph contrastive regularization, and achieves the final clustering outcomes using a self-training clustering algorithm. Notably, unlike neural network algorithms, this approach avoids the need for intricate parameter settings. Comprehensive experiments validate the supremacy of the SLMGC approach in multi-view graph clustering endeavors when contrasted with prevailing deep neural network techniques.


Subject(s)
Algorithms , Cluster Analysis , Neural Networks, Computer , Humans , Deep Learning
6.
Bioengineering (Basel) ; 11(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38790295

ABSTRACT

A class of algorithms based on subspace projection is widely used in the denoising of magnetoencephalography (MEG) signals. Setting the dimension of the interference (external) subspace matrix of these algorithms is the key to balancing the denoising effect and the degree of signal distortion. However, most current methods for estimating the dimension threshold rely on experience, such as observing the signal waveforms and spectrum, which may render the results too subjective and lacking in quantitative accuracy. Therefore, this study proposes a method to automatically estimate a suitable threshold. Time-frequency transformations are performed on the evoked state data to obtain the neural signal of interest and the noise signal in a specific time-frequency band, which are then used to construct the objective function describing the degree of noise suppression and signal distortion. The optimal value of the threshold in the selected range is obtained using the weighted-sum method. Our method was tested on two classical subspace projection algorithms using simulation and two sensory stimulation experiments. The thresholds estimated by the proposed method enabled the algorithms to achieve the best waveform recovery and source location error. Therefore, the threshold selected in this method enables subspace projection algorithms to achieve the best balance between noise removal and neural signal preservation in subsequent MEG analyses.

7.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38610084

ABSTRACT

The application of wearable magnetoencephalography using optically-pumped magnetometers has drawn extensive attention in the field of neuroscience. Electroencephalogram system can cover the whole head and reflect the overall activity of a large number of neurons. The efficacy of optically-pumped magnetometer in detecting event-related components can be validated through electroencephalogram results. Multivariate pattern analysis is capable of tracking the evolution of neurocognitive processes over time. In this paper, we adopted a classical Chinese semantic congruity paradigm and separately collected electroencephalogram and optically-pumped magnetometer signals. Then, we verified the consistency of optically-pumped magnetometer and electroencephalogram in detecting N400 using mutual information index. Multivariate pattern analysis revealed the difference in decoding performance of these two modalities, which can be further validated by dynamic/stable coding analysis on the temporal generalization matrix. The results from searchlight analysis provided a neural basis for this dissimilarity at the magnetoencephalography source level and the electroencephalogram sensor level. This study opens a new avenue for investigating the brain's coding patterns using wearable magnetoencephalography and reveals the differences in sensitivity between the two modalities in reflecting neuron representation patterns.


Subject(s)
Electroencephalography , Magnetoencephalography , Female , Male , Humans , Semantics , Evoked Potentials , Multivariate Analysis , China
8.
Article in English | MEDLINE | ID: mdl-38530717

ABSTRACT

The magnetoencephalogram (MEG) based on array optically pumped magnetometers (OPMs) has the potential of replacing conventional cryogenic superconducting quantum interference device. Phase synchronization is a common method for measuring brain oscillations and functional connectivity. Verifying the feasibility and fidelity of OPM-MEG in measuring phase synchronization will help its widespread application in the study of aforementioned neural mechanisms. The analysis method on source-level time series can weaken the influence of instantaneous field spread effect. In this paper, the OPM-MEG was used for measuring the evoked responses of 20Hz rhythmic and arrhythmic median nerve stimulation, and the inter-trial phase synchronization (ITPS) and inter-reginal phase synchronization (IRPS) of primary somatosensory cortex (SI) and secondary somatosensory cortex (SII) were analysed. The results find that under rhythmic condition, the evoked responses of SI and SII show continuous oscillations and the effect of resetting phase. The values of ITPS and IRPS significantly increase at the stimulation frequency of 20Hz and its harmonic of 40Hz, whereas the arrhythmic stimulation does not exhibit this phenomenon. Moreover, in the initial stage of stimulation, the ITPS and IRPS values are significantly higher at Mu rhythm in the rhythmic condition compared to arrhythmic. In conclusion, the results demonstrate the ability of OPM-MEG in measuring phase pattern and functional connectivity on source-level, and may also prove beneficial for the study on the mechanism of rhythmic stimulation therapy for rehabilitation.


Subject(s)
Magnetoencephalography , Median Nerve , Humans , Magnetoencephalography/methods , Time Factors , Brain/physiology , Head
9.
J Environ Manage ; 354: 120310, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377753

ABSTRACT

The generation of uranium-containing wastewater (UCW) during different stages of uranium mining, processing, and utilization presents a significant ecological and biospheric threat. Consequently, it is crucial for both sustainable development and the protection of human health to adopt appropriate methods for the treatment of UCW as well as the separation and enrichment of uranium. This study conducted a comprehensive search of the Web of Science Core Collection (WOSCC) database for publications related to UCW treatment between 1990 and 2022 to gain insight into current trends in the field. Subsequently, the annual publications, WOSCC categories, geographical distribution, major collaborations, prolific authors, influential journals, and highly cited publications were the subjects of a biliometric analysis that was subsequently carried out. The study findings indicate a significant rise in the overall number of publications in the research field between 1990 and 2022. China, India, and the USA emerged as the primary contributors in terms of publication count. The Chinese Academy of Sciences, the East China University of Technology, and the University of South China were identified as the key research institutions in this field. Furthermore, a majority of the publications in this field were distributed through prestigious journals with high impact factors, such as the Journal of Radioanalytical and Nuclear Chemistry. The top 3 journals were Radioanalytical and Nuclear Chemistry, Chemical Engineering Journal, and Journal of Hazardous Materials. The keyword co-occurrence and burst analysis revealed that the current research on UCW treatment mainly focuses on adsorption-based treatment methods, environmentally functional materials, uranium recovery, etc. Furthermore, the study of the adsorption efficiency of different adsorbent materials, as well as the strengthening and improvement of adsorbent material selectivity and capacity for the recovery of uranium, represents a research hotspot in the field of UCW treatment in the future. This study conducts a comprehensive overview of the current status and prospects of the UCW treatment, which can provide a valuable reference for gaining insights into the development trajectory of the UCW treatment.


Subject(s)
Uranium , Water Purification , Humans , Adsorption , Bibliometrics , China , Wastewater
10.
iScience ; 26(11): 108235, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37942013

ABSTRACT

Magnetocardiography (MCG) can be used to noninvasively measure the electrophysiological activity of myocardial cells. The high spatial resolution of magnetic source localization can precisely determine the location of cardiomyopathy, which is of great significance for the diagnosis and treatment of cardiovascular disease. To perform magnetic source localization, MCG data must be co-registered with anatomical images. We propose a co-registration method that can be applied to OPM-MCG systems. In this method, the sensor array and the trunk of the subject are scanned using structured light-scanning technology, and the scan results are registered with the reconstructed structure using computed tomography (CT). This can increase the number of effective cloud points acquired and reduce the interference from respiratory motion. The scanning bed of the OPM-MCG system was modified to be consistent with the CT device, ensuring that the state of the body remains consistent between the cardiac magnetometry measurements and CT scans.

11.
Environ Sci Pollut Res Int ; 30(56): 118192-118212, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37936038

ABSTRACT

Microbial remediation technology has received much attention as a green, ecological, and inexpensive technology, and there is great potential for the application of microbial remediation technology for heavy metals (HMs) contaminated soil alone and in conjunction with other technologies in environmental remediation. To gain an in-depth understanding of the latest research progress, research hotspots, and development trends on microbial remediation of HMs-contaminated soil, and to objectively reflect the scientific contributions and impacts of relevant countries/regions, institutions, and individuals of this field, in this manuscript, ISI Web of Knowledge's Web of Science™ core collection database, data visualization, and analysis software Bibliometrix, VOSviewer, and HistCite Pro were used to collect and analyze the relevant literature from 2000 to 2022, and 1409 publications were subjected to scientometric analyses. It involved 327 journals, 5150 authors, 75 countries/regions, and 2740 keywords. The current progress and hotspots on microbial remediation of HMs-contaminated soil since the twenty-first century were analyzed in terms of the top 10 most productive countries (regions), high-yielding authors, source journals, important research institutions, and hotspots of research directions. Over the past 22 years, China, India, and the USA have been the countries with the most articles. The institution and author with the most publications are the Chinese Acad Sci and Zhu YG, respectively. Journal of Hazardous Materials is the most productive journal. The keywords showed 6 co-occurrence clusters. These findings revealed the research hotspots, knowledge gaps, and future exploration trends related to microbial remediation of HMs-contaminated soil.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Humans , Environmental Pollution , Hazardous Substances , Soil
12.
Physiol Meas ; 44(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37995382

ABSTRACT

Objective.This study aimed to develop an automatic and accurate method for severity assessment and localization of coronary artery disease (CAD) based on an optically pumped magnetometer magnetocardiography (MCG) system.Approach.We proposed spatiotemporal features based on the MCG one-dimensional signals, including amplitude, correlation, local binary pattern, and shape features. To estimate the severity of CAD, we classified the stenosis as absence or mild, moderate, or severe cases and extracted a subset of features suitable for assessment. To localize CAD, we classified CAD groups according to the location of the stenosis, including the left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA), and separately extracted a subset of features suitable for determining the three CAD locations.Main results.For CAD severity assessment, a support vector machine (SVM) achieved the best result, with an accuracy of 75.1%, precision of 73.9%, sensitivity of 67.0%, specificity of 88.8%, F1-score of 69.8%, and area under the curve of 0.876. The highest accuracy and corresponding model for determining locations LAD, LCX, and RCA were 94.3% for the SVM, 84.4% for a discriminant analysis model, and 84.9% for the discriminant analysis model.Significance. The developed method enables the implementation of an automated system for severity assessment and localization of CAD. The amplitude and correlation features were key factors for severity assessment and localization. The proposed machine learning method can provide clinicians with an automatic and accurate diagnostic tool for interpreting MCG data related to CAD, possibly promoting clinical acceptance.


Subject(s)
Coronary Artery Disease , Magnetocardiography , Humans , Coronary Artery Disease/diagnostic imaging , Magnetocardiography/methods , Constriction, Pathologic , Machine Learning
13.
Comput Biol Med ; 164: 107318, 2023 09.
Article in English | MEDLINE | ID: mdl-37595517

ABSTRACT

The advent of optically pumped magnetometer-based magnetoencephalography (OPM-MEG) has introduced new tools for neuroscience and clinical research. As it is still under development, the achievable performance of OPM-MEG remains to be tested, particularly in terms of source localization accuracy, which can be influenced by various factors, including software and hardware aspects. A feasible approach to comprehensively test the performance of the OPM-MEG system is to utilize a phantom that simulates the actual electrophysiological properties of the head while ensuring the precise locations of dipole sources. However, conventional water or dry phantoms can only simulate a single-sphere head model. In this work, a more realistic three-layer phantom was designed and fabricated. The proposed phantom included the scalp, skull, and cortex tissues of the head, as well as the simulated dipole sources. The scalp and cortex tissues were simulated using an electrolyte solution, while the dipole source was constructed from a coaxial cable. All main structures in the phantom were produced using 3D printing techniques, making the phantom easy to manufacture. The fabricated phantom was tested on a 36-channel OPM-MEG system, and the results showed that the dipole source inside the phantom could generate a magnetic field distribution on the scalp that was close to its theoretical values. The average source localization accuracy of 5.51 mm verified the effectiveness of the designed phantom and the performance of our OPM-MEG system. This work provides an effective test platform for OPM-MEG.


Subject(s)
Cerebral Cortex , Magnetoencephalography , Phantoms, Imaging , Magnetic Fields , Scalp
14.
Phys Med Biol ; 68(16)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37406640

ABSTRACT

Objective. Optically pumped magnetometers (OPMs) are recently developed magnetocardiography (MCG) sensors that can detect cardiac diseases. This is of great clinical significance for detecting acute myocardial infarction (AMI) and premature ventricular contractions (PVC). This study investigates the use of an array of OPMs to detect heart disease in animals.Approach.An array of OPMs was used to detect the MCG of AMI and PVC in dogs. We used four dogs in this study, and models of AMI with different degrees of severity were established by ligating the middle and proximal segments of the left anterior descending coronary artery. The dogs had PVC at the time of AMI. Continuous MCG time series with corresponding electrocardiograms (ECGs) and average MCG for each dog in different states are presented. The MCG features were extracted from the MCG butterfly diagram, magnetic field map, and pseudo current density map. The MCG features were used to quantify and compare with the gold-standard ECG measures.Main results.The results show that MCG features can accurately distinguish different states of dogs. That is, an array of OPMs can effectively detect AMI and PVC in dogs.Significance.We conclude that the array of OPMs can detect heart diseases in animals. Moreover, OPMs can complement or even replace superconducting quantum interference devices for MCG measurement in animals and diagnosis of human heart diseases in the future.

15.
Brain Topogr ; 36(3): 350-370, 2023 05.
Article in English | MEDLINE | ID: mdl-37046041

ABSTRACT

Magnetoencephalography (MEG) is a noninvasive functional neuroimaging modality but highly susceptible to environmental interference. Signal space separation (SSS) is a method for improving the SNR to separate the MEG signals from external interference. The origin and truncation values of SSS significantly affect the SSS performance. The origin value fluctuates with respect to the helmet array, and determining the truncation values using the traversal method is time-consuming; thus, this method is inappropriate for optically pumped magnetometer (OPM) systems with flexible array designs. Herein, an automatic optimization method for the SSS parameters is proposed. Virtual sources are set inside and outside the brain to simulate the signals of interest and interference, respectively, via forward model, with the sensor array as prior information. The objective function is determined as the error between the signals from simulated sources inside the brain and the SSS reconstructed signals; thus, the optimized parameters are solved inversely by minimizing the objective function. To validate the proposed method, a simulation analysis and MEG auditory-evoked experiments were conducted. For an OPM sensor array, this method can precisely determine the optimized origin and truncation values of the SSS simultaneously, and the auditory-evoked component, for example, N100, can be accurately located in the temporal cortex. The proposed optimization procedure outperforms the traditional method with regard to the computation time and accuracy, simplifying the SSS process in signal preprocessing and enhancing the performance of SSS denoising.


Subject(s)
Brain , Magnetoencephalography , Humans , Magnetoencephalography/methods , Brain/diagnostic imaging , Brain/physiology , Brain Mapping/methods , Computer Simulation , Functional Neuroimaging
16.
IEEE Trans Med Imaging ; 42(9): 2706-2713, 2023 09.
Article in English | MEDLINE | ID: mdl-37015113

ABSTRACT

The advent of optically pumped magnetometers (OPMs) facilitates the development of on-scalp magnetoencephalography (MEG). In particular, the triaxial OPM emerged recently, making simultaneous measurements of all three orthogonal components of vector fields possible. The detection of triaxial magnetic fields improves the interference suppression capability and achieves higher source localization accuracy using fewer sensors. The source localization accuracy of MEG is based on the accurate co-registration of MEG and MRI. In this study, we proposed a triaxial co-registration method according to combined principal component analysis and iterative closest point algorithms for use of a flexible cap. A reference phantom with known sensor positions and orientations was designed and constructed to evaluate the accuracy of the proposed method. Experiments showed that the average co-registered position errors of all sensors were approximately 1 mm and average orientation errors were less than 2.5° in the X -and Y orientations and less than 1.6° in the Z orientation. Furthermore, we assessed the influence of co-registration errors on the source localization using simulations. The average source localization error of approximately 1 mm reflects the effectiveness of the co-registration method. The proposed co-registration method facilitates future applications of triaxial sensors on flexible caps.


Subject(s)
Brain , Magnetoencephalography , Magnetoencephalography/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging , Scalp , Algorithms
17.
Sensors (Basel) ; 22(24)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36560335

ABSTRACT

Deep learning has substantially improved the state-of-the-art in object detection and image classification. Deep learning usually requires large-scale labelled datasets to train the models; however, due to the restrictions in medical data sharing and accessibility and the expensive labelling cost, the application of deep learning in medical image classification has been dramatically hindered. In this study, we propose a novel method that leverages semi-supervised adversarial learning and pseudo-labelling to incorporate the unlabelled images in model learning. We validate the proposed method on two public databases, including ChestX-ray14 for lung disease classification and BreakHis for breast cancer histopathological image diagnosis. The results show that our method achieved highly effective performance with an accuracy of 93.15% while using only 30% of the labelled samples, which is comparable to the state-of-the-art accuracy for chest X-ray classification; it also outperformed the current methods in multi-class breast cancer histopathological image classification with a high accuracy of 96.87%.


Subject(s)
Information Dissemination , Supervised Machine Learning , Databases, Factual , Thorax
18.
iScience ; 25(10): 105177, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36238897

ABSTRACT

The emergence of the optically pumped magnetometer (OPM)-based magnetoencephalography (MEG) has led to new developments in MEG technology. The source imaging results of different magnetic source imaging (MSI) methods show considerable differences, which makes it difficult for researchers to choose an appropriate method. This study assessed time-domain MSI methods implemented in the Brainstorm, FieldTrip, and SPM12 toolboxes using simulations. We proposed using a metric, variational free energy under the Bayesian framework, as an indicator to evaluate source imaging results because it does not require the ground truth of sources but uses the fitness of the measurement data. Our simulations demonstrated the effectiveness of the variational free energy in indicating the quality of the source reconstruction results. We then applied each MSI method to the real OPM-MEG experimental data. We aimed to highlight the characteristics of each method and provide references for researchers choosing an appropriate MSI method.

19.
Front Bioeng Biotechnol ; 10: 914964, 2022.
Article in English | MEDLINE | ID: mdl-36312556

ABSTRACT

To generate and evaluate post-therapeutic optical coherence tomography (OCT) images based on pre-therapeutic images with generative adversarial network (GAN) to predict the short-term response of patients with retinal vein occlusion (RVO) to anti-vascular endothelial growth factor (anti-VEGF) therapy. Real-world imaging data were retrospectively collected from 1 May 2017, to 1 June 2021. A total of 515 pairs of pre-and post-therapeutic OCT images of patients with RVO were included in the training set, while 68 pre-and post-therapeutic OCT images were included in the validation set. A pix2pixHD method was adopted to predict post-therapeutic OCT images in RVO patients after anti-VEGF therapy. The quality and similarity of synthetic OCT images were evaluated by screening and evaluation experiments. We quantitatively and qualitatively assessed the prognostic accuracy of the synthetic post-therapeutic OCT images. The post-therapeutic OCT images generated by the pix2pixHD algorithm were comparable to the actual images in edema resorption response. Retinal specialists found most synthetic images (62/68) difficult to differentiate from the real ones. The mean absolute error (MAE) of the central macular thickness (CMT) between the synthetic and real OCT images was 26.33 ± 15.81 µm. There was no statistical difference in CMT between the synthetic and the real images. In this retrospective study, the application of the pix2pixHD algorithm objectively predicted the short-term response of each patient to anti-VEGF therapy based on OCT images with high accuracy, suggestive of its clinical value, especially for screening patients with relatively poor prognosis and potentially guiding clinical treatment. Importantly, our artificial intelligence-based prediction approach's non-invasiveness, repeatability, and cost-effectiveness can improve compliance and follow-up management of this patient population.

20.
Front Neurosci ; 16: 984036, 2022.
Article in English | MEDLINE | ID: mdl-36188451

ABSTRACT

Magnetoencephalography (MEG) based on optically pumped magnetometers (OPM-MEG) has shown better flexibility in sensor configuration compared with the conventional superconducting quantum interference devices-based MEG system while being better suited for all-age groups. However, this flexibility presents challenges for the co-registration of MEG and magnetic resonance imaging (MRI), hindering adoption. This study presents a toolbox called OMMR, developed in Matlab, that facilitates the co-registration step for researchers and clinicians. OMMR integrates the co-registration methods of using the electromagnetic digitization system and two types of optical scanners (the structural-light and laser scanner). As the first open-source co-registration toolbox specifically for OPM-MEG, the toolbox aims to standardize the co-registration process and set the ground for future applications of OPM-MEG.

SELECTION OF CITATIONS
SEARCH DETAIL
...