Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Biochem Genet ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656671

ABSTRACT

Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.

2.
Nutr Metab Cardiovasc Dis ; 34(6): 1518-1527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508991

ABSTRACT

BACKGROUND AND AIMS: The role of serum uric acid (SUA) in the prognosis of chronic kidney disease (CKD) is inconclusive. To explore the association of SUA level with all-cause and cardiovascular disease (CVD) mortality in patients with CKD. METHODS AND RESULTS: Leveraging data from the National Health and Nutritional Examination Survey (NHANES) and linked national death records up to December 31 2019, we explored the association of SUA with all-cause and CVD mortality using weighted cox proportional hazards regression models and restricted cubic spline (RCS) models in patients with CKD stages 3-5. The study finally included 2644 patients with CKD stages 3-5, with a median SUA level of 6.5 mg/dL. After a median follow-up of 55 months, a total of 763 deaths were recorded, with 279 of them attributed to CVD. In the fully adjusted model, per 1 mg/dL increment in SUA concentration was found to be associated with increased HRs (95% CIs) of 1.07 (1.00, 1.14) for all-cause mortality and 1.11 (1.00, 1.24) for CVD mortality. Compared to Q2 (reference), those in Q4 had adjusted HRs of 1.72 (1.36, 2.17) for all-cause mortality and 2.17 (1.38, 3.41) for CVD mortality, while those in Q1 had adjusted HRs of 1.49 (1.19, 1.85) for all-cause mortality and 1.93 (1.26, 2.98) for CVD mortality. CONCLUSIONS: Both higher and lower SUA levels were associated with increased risks of all-cause and CVD mortality in patients with CKD stages 3-5.


Subject(s)
Biomarkers , Cardiovascular Diseases , Cause of Death , Hyperuricemia , Nutrition Surveys , Renal Insufficiency, Chronic , Uric Acid , Humans , Uric Acid/blood , Male , Female , Cardiovascular Diseases/mortality , Cardiovascular Diseases/blood , Cardiovascular Diseases/diagnosis , Renal Insufficiency, Chronic/mortality , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/diagnosis , Middle Aged , Risk Assessment , Biomarkers/blood , Aged , Hyperuricemia/blood , Hyperuricemia/mortality , Hyperuricemia/diagnosis , Time Factors , Prognosis , United States/epidemiology , Risk Factors , Adult , Heart Disease Risk Factors
3.
QJM ; 117(4): 247-255, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37354530

ABSTRACT

Acute kidney injury (AKI) is a complex clinical syndrome with a poor short-term prognosis, which increases the risk of the development of chronic kidney diseases and end-stage kidney disease. However, the underlying mechanism of AKI remains to be fully elucidated, and effective prevention and therapeutic strategies are still lacking. Given the enormous energy requirements for filtration and absorption, the kidneys are rich in mitochondria, which are unsurprisingly involved in the onset or progression of AKI. Accumulating evidence has recently documented that Sirtuin 3 (SIRT3), one of the most prominent deacetylases highly expressed in the mitochondria, exerts a protective effect on AKI. SIRT3 protects against AKI by regulating energy metabolism, inhibiting oxidative stress, suppressing inflammation, ameliorating apoptosis, inhibiting early-stage fibrosis and maintaining mitochondrial homeostasis. Besides, a number of SIRT3 activators have exhibited renoprotective properties both in animal models and in vitro experiments, but have not yet been applied to clinical practice, indicating a promising therapeutic approach. In this review, we unravel and summarize the recent advances in SIRT3 research and the potential therapy of SIRT3 activators in AKI.


Subject(s)
Acute Kidney Injury , Sirtuin 3 , Animals , Acute Kidney Injury/prevention & control , Energy Metabolism , Kidney , Oxidative Stress , Sirtuin 3/metabolism , Humans
4.
Ren Fail ; 45(2): 2285877, 2023.
Article in English | MEDLINE | ID: mdl-37994423

ABSTRACT

BACKGROUND: Emerging evidence suggests that gut microbiota dysbiosis may play a critical role in the development of lupus nephritis (LN). However, the specific characteristics of the gut microbiota in individuals with LN have not been fully clarified. METHODS: The PubMed, Web of Science, and Embase databases were systematically searched for clinical and animal studies related to the relationship between LN and gut microbiota from inception until October 1, 2023. A semiquantitative analysis was used to assess the changes in gut microbial profiles. RESULTS: A total of 15 clinical studies were selected for analysis, which included 138 LN patients, 441 systemic lupus erythematosus patients, and 1526 healthy controls (HCs). Five different types of LN mouse models were included in 5 animal studies. The alpha diversity was decreased in LN patients compared to HCs. A significant decrease in the Firmicutes/Bacteroidetes (F/B) ratio is considered a hallmark of pathological conditions. Specifically, alterations in the abundance of the phylum Proteobacteria, genera Streptococcus and Lactobacillus, and species Ruminococcus gnavus and Lactobacillus reuteri may play a critical role in the pathogenesis of LN. Remarkably, the gut taxonomic chain Bacteroidetes-Bacteroides-Bacteroides thetaiotaomicron was enriched in LN patients, which could be a crucial characteristic of LN patients. The increased level of interleukin-6, imbalance of regulatory T cells and T helper 17 cells, and decreased level of the intestinal tight junction proteins zonula occludens-1 and claudin-1 also might be related to the pathogenesis of LN. CONCLUSIONS: Specific changes in the abundance of gut microbiota such as decreased F/B ratio, and the level of inflammatory indicators, and markers of intestinal barrier dysfunction may play a crucial role in the pathogenesis of LN. These factors could be effective diagnostic and potential therapeutic targets for LN.


Subject(s)
Gastrointestinal Microbiome , Intestinal Diseases , Lupus Erythematosus, Systemic , Lupus Nephritis , Animals , Mice , Humans , Interleukin-6
5.
Cell Commun Signal ; 21(1): 270, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37784111

ABSTRACT

The abnormal lipid and glucose metabolisms are linked to the metabolic disorders, tumorigenesis, and fibrotic diseases, which attracts the increasing attention to find out the key molecules involved in the lipid and glucose metabolism as the possible therapeutic targets on these diseases. A transcriptional factor Twist1 has been associated with not only the embryonic development, cancer, and fibrotic diseases, but also the regulation of lipid and glucose metabolism. In this review, we will discuss the roles and mechanisms of Twist1 in the obesity-associated white adipose tissue inflammation and insulin resistance, brown adipose tissue metabolism, fatty acid oxidation, and glucose metabolism in skeletal muscle to provide a rational perspective to consider Twist1 as a potential treatment target in clinic. Video Abstract.


Subject(s)
Insulin Resistance , Muscle, Skeletal , Humans , Muscle, Skeletal/metabolism , Lipid Metabolism , Inflammation/metabolism , Glucose/metabolism , Lipids
6.
Mol Nutr Food Res ; 67(21): e2300218, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37691068

ABSTRACT

Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Humans , Tryptophan/metabolism , Renal Insufficiency, Chronic/etiology , Kynurenine , Signal Transduction , Acute Kidney Injury/etiology
7.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511374

ABSTRACT

Chronic kidney disease (CKD) is a major public health issue around the world. A significant number of CKD patients originates from acute kidney injury (AKI) patients, namely "AKI-CKD". CKD is significantly related to the consequences of AKI. Damaged renal proximal tubular (PT) cell repair has been widely confirmed to indicate the renal prognosis of AKI. Oxidative stress is a key damage-associated factor and plays a significant role throughout the development of AKI and CKD. However, the relationships between AKI-CKD progression and oxidative stress are not totally clear and the underlying mechanisms in "AKI-CKD" remain indistinct. In this research, we constructed unilateral ischemia-reperfusion injury (UIRI)-model mice and performed single-nucleus RNA sequencing (snRNA-seq) of the kidney samples from UIRI and sham mice. We obtained our snRNA-seq data and validated the findings based on the joint analysis of public databases, as well as a series of fundamental experiments. Proximal tubular cells associated with failed repair express more complete senescence and oxidative stress characteristics compared to other subgroups. Furthermore, oxidative stress-related transcription factors, including Stat3 and Dnmt3a, are significantly more active under the circumstance of failed repair. What is more, we identified abnormally active intercellular communication between PT cells associated with failed repair and macrophages through the APP-CD74 pathway. More notably, we observed that the significantly increased expression of CD74 in hypoxia-treated TECs (tubular epithelial cells) was dependent on adjacently infiltrated macrophages, which was essential for the further deterioration of failed repair in PT cells. This research provides a novel understanding of the process of AKI to CKD progression, and the oxidative stress-related characteristics that we identified might represent a potentially novel therapeutic strategy against AKI.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Mice , Animals , Kidney Tubules, Proximal/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/complications , Oxidative Stress , Reperfusion Injury/metabolism
8.
Aging Clin Exp Res ; 35(7): 1577-1580, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37233902

ABSTRACT

BACKGROUND: Infection is the leading cause of multiple organ dysfunction syndrome (MODS) in the elderly. Red blood cell distribution width (RDW) was considered to be associated with many diseases. We aimed to explore whether RDW was associated with MODS in elderly infected patients. METHODS: We retrospectively collected data from elderly patients (≥ 65 years old) with infection. In this study, we conducted a 1:3 case-control match based on age and gender and utilized binary Logistic regression to investigate the impact of variables such as RDW on MODS. RESULTS: A total of 576 eligible patients were included in this study. RDW in the case group was significantly higher than that in control group (p < 0.001). Multivariate analysis found that RDW was an independent risk factor for MODS in elderly infected patients (OR = 1.397, 95% CI: 1.166-1.674, p < 0.001). CONCLUSIONS: RDW was an independent risk factor for MODS in elderly patients with infection.


Subject(s)
Erythrocyte Indices , Multiple Organ Failure , Humans , Aged , Case-Control Studies , Retrospective Studies , Risk Factors , Erythrocytes
9.
Cell Commun Signal ; 21(1): 90, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37131173

ABSTRACT

Organ fibrosis can occur in virtually all major organs with relentlessly progressive and irreversible progress, ultimately resulting in organ dysfunction and potentially death. Unfortunately, current clinical treatments cannot halt or reverse the progression of fibrosis to end-stage organ failure, and thus, advanced antifibrotic therapeutics are urgently needed. In recent years, a growing body of research has revealed that circular RNAs (circRNAs) play pivotal roles in the development and progression of organ fibrosis through highly diverse mechanisms of action. Thus, manipulating circRNAs has emerged as a promising strategy to mitigate fibrosis across different organ types. In this review, we systemically summarize the current state of knowledge about circRNA biological properties and the regulatory mechanisms of circRNAs. A comprehensive overview of major fibrotic signaling pathways and representative circRNAs that are known to modulate fibrotic signals are outlined. Then, we focus on the research progress of the versatile functional roles and underlying molecular mechanisms of circRNAs in various fibrotic diseases in different organs, including the heart, liver, lung, kidney and skin. Finally, we offer a glimpse into the prospects of circRNA-based interference and therapy, as well as their utilization as biomarkers in the diagnosis and prognosis of fibrotic diseases. Video abstract.


Subject(s)
RNA, Circular , RNA , Humans , RNA, Circular/genetics , RNA/genetics , RNA/metabolism , Fibrosis , Skin/metabolism , Signal Transduction/genetics
10.
Age Ageing ; 52(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37211364

ABSTRACT

BACKGROUND: Delirium is a common complication clinically and is associated with the poor outcomes, yet it is frequently unrecognised and readily disregarded. Although the 3-minute diagnostic interview for confusion assessment method-defined delirium (3D-CAM) has been used in a variety of care settings, a comprehensive evaluation of its accuracy in all available care settings has not been performed. OBJECTIVE: This study aimed to evaluate the diagnostic test accuracy of the 3D-CAM in delirium detection through a systematic review and meta-analysis. METHODS: We systematically searched PubMed, EMBASE, the Cochrane Library, Web of Science, CINAHL (EBSCO) and ClinicalTrials.gov published from inception to 10 July 2022. The quality assessment of the diagnostic accuracy studies-2 tool was applied to evaluate methodological quality. A bivariate random effects model was used to pool sensitivity and specificity. RESULTS: Seven studies with 1,350 participants and 2,499 assessments were included, which were carried out in general medical wards, intensive care units, internal medical wards, surgical wards, recovery rooms and post-anaesthesia care units. The prevalence of delirium ranged from 9.1% to 25%. The pooled sensitivity and specificity were 0.92 (95% confidence interval [CI] 0.87-0.95) and 0.95 (95% CI 0.92-0.97), respectively. The pooled positive likelihood ratio was 18.6 (95% CI 12.2-28.2), the negative likelihood ratio was 0.09 (95% CI 0.06-0.14) and the diagnostic odds ratio was 211 (95% CI 128-349). Moreover, the area under the curve was 0.97 (95% CI 0.95-0.98). CONCLUSIONS: The 3D-CAM has good diagnostic accuracy for delirium detection in different care settings. Further analyses illustrated that it had comparable diagnostic accuracy in older adults and patients with dementia or known baseline cognitive impairment. In conclusion, the 3D-CAM is recommended for clinical delirium detection.


Subject(s)
Delirium , Humans , Aged , Delirium/diagnosis , Sensitivity and Specificity , Intensive Care Units , Hospitals , Patients' Rooms
12.
Front Immunol ; 13: 973760, 2022.
Article in English | MEDLINE | ID: mdl-36341382

ABSTRACT

Background: Emerging evidence revealed that gut microbial dysbiosis is implicated in the development of plasma cell dyscrasias and amyloid deposition diseases, but no data are available on the relationship between gut microbiota and immunoglobulin light chain (AL) amyloidosis. Methods: To characterize the gut microbiota in patients with AL amyloidosis, we collected fecal samples from patients with AL amyloidosis (n=27) and age-, gender-, and BMI-matched healthy controls (n=27), and conducted 16S rRNA MiSeq sequencing and amplicon sequence variants (ASV)-based analysis. Results: There were significant differences in gut microbial communities between the two groups. At the phylum level, the abundance of Actinobacteriota and Verrucomicrobiota was significantly higher, while Bacteroidota reduced remarkably in patients with AL amyloidosis. At the genus level, 17 genera, including Bifidobacterium, Akkermansia, and Streptococcus were enriched, while only 4 genera including Faecalibacterium, Tyzzerella, Pseudomonas, and Anaerostignum decreased evidently in patients with AL amyloidosis. Notably, 5 optimal ASV-based microbial markers were identified as the diagnostic model of AL amyloidosis and the AUC value of the train set and the test set was 0.8549 (95% CI 0.7310-0.9789) and 0.8025 (95% CI 0.5771-1), respectively. With a median follow-up of 19.0 months, further subgroup analysis also demonstrated some key gut microbial markers were related to disease severity, treatment response, and even prognosis of patients with AL amyloidosis. Conclusions: For the first time, we demonstrated the alterations of gut microbiota in AL amyloidosis and successfully established and validated the microbial-based diagnostic model, which boosted more studies about microbe-based strategies for diagnosis and treatment in patients with AL amyloidosis in the future.


Subject(s)
Gastrointestinal Microbiome , Immunoglobulin Light-chain Amyloidosis , Humans , Gastrointestinal Microbiome/physiology , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Feces/microbiology , Biomarkers
13.
Front Physiol ; 13: 909491, 2022.
Article in English | MEDLINE | ID: mdl-36388089

ABSTRACT

Background: The pathogenesis of idiopathic membranous nephropathy (IMN) has not yet been thoroughly clarified, and gut dysbiosis may be a contributor to IMN. However, the characterization of gut microbiota in patients with IMN remains uncertain. Methods: Cochrane Library, PubMed, China National Knowledge Internet, Web of Science, and Embase were used to search for studies through 18 May 2022. A meta-analysis based on the standardized mean difference (SMD) with 95% confidence interval (CI) was conducted on the alpha diversity index. The between-group comparison of the relative abundance of gut microbiota taxa and the beta diversity were extracted and qualitatively analyzed. Results: Five studies were included involving 290 patients with IMN, 100 healthy controls (HCs), and 129 patients with diabetic kidney disease (DKD). The quantitative combination of alpha diversity indices indicated that although bacterial richness was impaired [ACE, SMD = 0.12, (-0.28, 0.52), p = 0.55, I 2 = 0%; Chao1, SMD = -0.34, (-0.62, -0.06), p < 0.05, I 2 = 36%], overall diversity was preserved [Shannon, SMD = -0.16, (-0.64, 0.31), p = 0.50, I 2 = 53%; Simpson, SMD = 0.27, (-0.08, 0.61), p = 0.13, I 2 = 0%]. The beta diversity was significantly varied compared to HCs or DKD patients. Compared to HCs, the abundance of Proteobacteria increased, while that of Firmicutes decreased at the phylum level. Furthermore, the abundance of Lachnospira were depleted, while those of Streptococcus were enriched at the genus level. Proteobacteria and Streptococcus were also increased compared to DKD patients. Conclusions: The expansion of Proteobacteria and depletion of Lachnospira may be critical features of the altered gut microbiota in patients with IMN. This condition may play an important role in the pathogenesis of IMN and could provide bacterial targets for diagnosis and therapy.

14.
J Am Soc Nephrol ; 33(12): 2276-2292, 2022 12.
Article in English | MEDLINE | ID: mdl-36041791

ABSTRACT

BACKGROUND: Gut dysbiosis is postulated to participate in the pathogenesis of IgA nephropathy (IgAN). However, the key bacterial taxa closely associated with IgAN onset and treatment response have not been identified. METHODS: We recruited 127 patients with IgAN who were treatment naive and 127 matched healthy controls (HCs) who were randomly divided into discovery and validation cohorts to investigate the characteristics of their gut microbiota and establish a bacterial diagnosis model for IgAN. A separate cohort of 56 patients and HCs was investigated to assess crossregional validation. A further 40 patients with primary membranous nephropathy (MN) were enrolled to probe disease-specific validation. A subgroup of 77 patients was prospectively followed to further dissect the association between alterations in gut microbiota and treatment response after 6 months of immunosuppressive therapy. Fecal microbiota samples were collected from all participants and analyzed using 16S ribosomal RNA sequencing. RESULTS: Decreased α-diversity (Shannon, P=0.03), altered microbial composition (Adonis, P=0.0001), and a striking expansion of the taxonomic chain Proteobacteria-Gammaproteobacteria-Enterobacteriales-Enterobacteriaceae-Escherichia-Shigella (all P<0.001) were observed in patients with IgAN who were treatment naive, which reversed only in patients who achieved clinical remission after 6 months of immunosuppressive therapy. Importantly, seven operational taxa units, of which Escherichia-Shigella contributed the most, were determined to be the optimal bacterial classifier of IgAN (AUC=0.8635, 0.8551, 0.8026 in discovery, validation, and cross-regional validation sets, respectively), but did not effectively distinguish patients with IgAN versus those with MN (AUC=0.6183). Bacterial function prediction further verified enrichment of the shigellosis infection pathway in IgAN. CONCLUSION: Gut dysbiosis, characterized by a striking expansion of genus Escherichia-Shigella, is a hallmark of patients with IgAN and may serve as a promising diagnostic biomarker and therapeutic target for IgAN. Further studies are warranted to investigate the potential contribution of Escherichia-Shigella in IgAN pathogenesis.


Subject(s)
Glomerulonephritis, IGA , Immunosuppression Therapy , Shigella , Humans , Bacteria , Dysbiosis , Escherichia , Glomerulonephritis, IGA/genetics
15.
Front Immunol ; 13: 908219, 2022.
Article in English | MEDLINE | ID: mdl-35784273

ABSTRACT

Background: Emerging evidence indicates that gut dysbiosis is involved in the occurrence and development of diabetic kidney diseases (DKD). However, the key microbial taxa closely related to DKD have not been determined. Methods: PubMed, Web of Science, Cochrane, Chinese Biomedical Databases, China National Knowledge Internet, and Embase were searched for case-control or cross-sectional studies comparing the gut microbiota of patients with DKD and healthy controls (HC) from inception to February 8, 2022, and random/fixed-effects meta-analysis on the standardized mean difference (SMD) were performed for alpha diversity indexes between DKD and HC, and beta diversity indexes and the relative abundance of gut microbiota were extracted and summarized qualitatively. Results: A total of 16 studies (578 patients with DKD and 444 HC) were included. Compared to HC, the bacterial richness of patients with DKD was significantly decreased, and the diversity indexes were decreased but not statistically, companying with a distinct beta diversity. The relative abundance of phylum Proteobacteria, Actinobacteria, and Bacteroidetes, family Coriobacteriaceae, Enterobacteriaceae, and Veillonellaceae, genus Enterococcus, Citrobacter, Escherichia, Klebsiella, Akkermansia, Sutterella, and Acinetobacter, and species E. coli were enriched while that of phylum Firmicutes, family Lachnospiraceae, genus Roseburia, Prevotella, and Bifidobacterium were depleted in patients with DKD. Conclusions: The gut microbiota of patients with DKD may possess specific features characterized by expansion of genus Escherichia, Citrobacter, and Klebsiella, and depletion of Roseburia, which may contribute most to the alterations of their corresponding family and phylum taxa, as well as the bacterial diversity and composition. These microbial taxa may be closely related to DKD and serve as promising targets for the management of DKD. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42021289863.


Subject(s)
Actinobacteria , Diabetes Mellitus , Diabetic Nephropathies , Gastrointestinal Microbiome , Bacteria , Clostridiales , Cross-Sectional Studies , Escherichia coli , Feces/microbiology , Humans
16.
Theranostics ; 12(8): 3758-3775, 2022.
Article in English | MEDLINE | ID: mdl-35664054

ABSTRACT

Rationale: A deficiency of fatty acid oxidation (FAO) is the metabolic hallmark in proximal tubular cells (PTCs) in renal fibrosis owing to utilization of fatty acids by PTCs as the main energy source. Lipid accumulation may promote lipotoxicity-induced pathological injury in renal tissue. However, the molecular mechanism underlying lipotoxicity and renal tubulointerstitial fibrosis (TIF) remains unclear. Twist1 has been identified to play an essential role in fatty acid metabolism. We hypothesized that Twist1 may regulate FAO in PTCs and consequently facilitate lipotoxicity-induced TIF. Methods: We used hypoxia-induced Twist1 overexpression to incite defective mitochondrial FAO in PTCs, and used renal ischemia-reperfusion or unilateral ureteral obstruction to induce renal injury in mice. We used knockout cells, mice of Twist1, and Harmine to determine the role of Twist1 in FAO and TIF. Results: Overexpression of Twist1 downregulates the transcription of PGC-1α and further inhibits the expression of FAO-associated genes, such as PPARα, CPT1 and ACOX1. Consequently, reduced FAO and increased intracellular lipid droplet accumulation in a human PTC line (HK-2), leads to mitochondrial dysfunction, and production of increased profibrogenic factors. Twist1 knockout mice with renal injury had increased expression of PGC-1α, which restored FAO and obstructed progression of TIF. Strikingly, pharmacological inhibition of Twist1 by using Harmine reduced lipid accumulation and restored FAO in vitro and in vivo. Conclusion: Our findings suggest that Twist1-mediated inhibition of FAO in PTCs results in TIF and suggest that Twist1-targeted inhibition could provide a potential strategy for the treatment of renal fibrosis.


Subject(s)
Harmine , Kidney Diseases , Animals , Down-Regulation , Epithelial Cells/metabolism , Fatty Acids/metabolism , Fibrosis , Kidney/pathology , Kidney Diseases/pathology , Mice
17.
Cell Mol Life Sci ; 79(3): 137, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35182235

ABSTRACT

Renal interstitial fibrosis is the pathological basis of end-stage renal disease, in which the heterogeneity of macrophages in renal microenvironment plays an important role. However, the molecular mechanisms of macrophage plasticity during renal fibrosis progression remain unclear. In this study, we found for the first time that increased expression of Twist1 in macrophages was significantly associated with the severity of renal fibrosis in IgA nephropathy patients and mice with unilateral ureteral obstruction (UUO). Ablation of Twist1 in macrophages markedly alleviated renal tubular injury and renal fibrosis in UUO mice, accompanied by a lower extent of macrophage infiltration and M2 polarization in the kidney. The knockdown of Twist1 inhibited the chemotaxis and migration of macrophages, at least partially, through the CCL2/CCR2 axis. Twist1 downregulation inhibited M2 macrophage polarization and reduced the secretion of the profibrotic factors Arg-1, MR (CD206), IL-10, and TGF-ß. Galectin-3 was decreased in the macrophages of the conditional Twist1-deficient mice, and Twist1 was shown to directly activate galectin-3 transcription. Up-regulation of galectin-3 recovered Twist1-mediated M2 macrophage polarization. In conclusion, Twist1/galectin-3 signaling regulates macrophage plasticity (M2 phenotype) and promotes renal fibrosis. This study could suggest new strategies for delaying kidney fibrosis in patients with chronic kidney disease.


Subject(s)
Fibrosis/pathology , Galectin 3/metabolism , Kidney Diseases/pathology , Macrophage Activation , Twist-Related Protein 1/metabolism , Ureteral Obstruction/complications , Animals , Fibrosis/etiology , Fibrosis/metabolism , Galectin 3/genetics , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Twist-Related Protein 1/genetics
18.
NPJ Vaccines ; 6(1): 147, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34887436

ABSTRACT

Older adults (≥65 years of age) bear a significant burden of severe disease and mortality associated with influenza, despite relatively high annual vaccination coverage and substantial pre-existing immunity to influenza. To test the hypothesis that host factors, including age and sex, play a role in determining the effect of repeated vaccination and levels of pre-existing humoral immunity to influenza, we evaluated pre- and post-vaccination strain-specific hemagglutination inhibition (HAI) titers in adults over 75 years of age who received a high-dose influenza vaccine in at least four out of six influenza seasons. Pre-vaccination titers, rather than host factors and repeated vaccination were significantly associated with post-vaccination HAI titer outcomes, and displayed an age-by-sex interaction. Pre-vaccination titers to H1N1 remained constant with age. Titers to H3N2 and influenza B viruses decreased substantially with age in males, whereas titers in females remained constant with age. Our findings highlight the importance of pre-existing immunity in this highly vaccinated older adult population and suggest that older males are particularly vulnerable to reduced pre-existing humoral immunity to influenza.

19.
Endocrine ; 74(2): 281-284, 2021 11.
Article in English | MEDLINE | ID: mdl-34448100

ABSTRACT

PURPOSE: Cushing's syndrome (CS) is a rare and severe disease caused by sustained hypercortisolism. The clinical manifestations of CS can be atypical in the elderly, and the diagnosis in these patients is often missed. Infectious Purpura Fulminans (PF) is a life-threating, thrombotic form of disseminated intravascular coagulation with high mortality. To our knowledge, PF occurring in a patient with CS has not been reported previously. METHODS: We described an 84-year-old female presented with severe infection, but normal temperature. She suffered from a variety of diseases especially personality change. Physical examination revealed thin skin, general edema, and multiple scattered ecchymosis. Combined with obviously elevated serum cortisol (36.85 ug/dl) and adenoma revealed by adrenal CT scanning, endogenous CS was diagnosed. During hospitalization, the patient developed serious subcutaneous hemorrhage on the right thigh and back. The skin biopsy showed multiple small vessel thrombosis suggesting that the patient developed the rare complication of CS, Purpura Fulminans (PF). RESULTS: Chronic hypercortisolism can cause immune suppression, low-grade inflammation, endothelial damage, and a hypercoagulable state, which together increased susceptibility of PF. Fluid resuscitation, antibiotics, infusion of blood product, and debridement were effective treatment measures when CS complicated with infectious PF. CONCLUSION: Severe subcutaneous hemorrhage due to PF could occur in the patients of CS, especially in the elderly. Clinicians should be alert to the diagnosis of CS in older adults with cognitive decline and personality change.


Subject(s)
Cushing Syndrome , Aged , Aged, 80 and over , Cushing Syndrome/complications , Female , Humans , Hydrocortisone , Tomography, X-Ray Computed
20.
Colloids Surf B Biointerfaces ; 200: 111588, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33529928

ABSTRACT

Infections resulting from bacteria and biofilms have become a huge problem threatening human health. In recent years, the antibacterial and antibiofilm effects of graphene and its derivatives have been extensively studied. However, there continues to be some controversy over whether graphene and its derivatives can resist infection and biofilms. Moreover, the antibacterial mechanism and cytotoxicity of graphene and its derivatives are unclear. In the present review, antibacterial and antibiofilm abilities of graphene and its derivatives in solution, on the surface are reviewed, and their toxicity and possible mechanisms are also reviewed. Furthermore, we propose possible future development directions for graphene and its derivatives in antibacterial and antibiofilm applications.


Subject(s)
Anti-Infective Agents , Graphite , Anti-Bacterial Agents/pharmacology , Bacteria , Biofilms , Humans , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...